Wild oat (Avena sterilis L.) competition with winter barley: plant density effects

Weed Research ◽  
2006 ◽  
Vol 31 (5) ◽  
pp. 301-307 ◽  
Author(s):  
C. TORNER ◽  
J. L. GONZALEZ ANDUJAR ◽  
C. FERNANDEZ-QUINTANILLA
1999 ◽  
Vol 79 (4) ◽  
pp. 655-662 ◽  
Author(s):  
J. T. O'Donovan ◽  
J. C. Newman ◽  
K. N. Harker ◽  
R. E. Blackshaw ◽  
D. W. McAndrew

There has been little research aimed at developing regression models to describe the effects of barley and wild oat plant density on barley yield loss, or wild oat biomass and seed yield. Such models are an important component of integrated weed management systems, and can help determine when weed control with herbicides is economical. Field experiments were conducted over 4 yr at Vegreville, Alberta, to determine the interactive effects of wild oat and barley plant density on barley and wild oat variables in a zero tillage system. A nonlinear regression model in most cases provided good descriptions of barley yield loss, wild oat shoot dry weight, and wild oat seed yield as functions of wild oat and barley plant densities. The interactive effect of wild oat and barley plant density on percentage barley yield loss did not differ significantly (P = 0.05) among years. A pooled regression model describing barley yield loss accounted for 57% of the variation, and provides a means of estimating yield loss due to wild oat in barley grown under zero tillage. Barley yield loss increased as wild oat density increased but the magnitude of the yield loss diminished with increasing barley plant density. Wild oat economic threshold densities varied among years, and were strongly influenced by barley price and expected wild oat-free yield. Economic thresholds were greater at higher barley plant densities. Barley seed weight decreased with increasing barley plant density, and to a lesser extent with increasing wild oat density. The interactive effect of wild oat and barley plant density on wild oat seed yield varied significantly with year, and appeared to be influenced by climatic conditions. The cooler, wetter spring of 1996 favored wild oat seed production (by several orders of magnitude) compared with the relatively warmer and drier spring of 1995. Each year wild oat seed yield and shoot dry weight decreased as barley plant density increased. The results suggest that seeding barley at relatively high rates may reduce the need for wild oat control with herbicides in zero tillage systems. Key words: Zero tillage, wild oat interference, barley seeding rate, nonlinear regression


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Vipan Kumar ◽  
Prashant Jha

Field experiments were conducted at the Montana State University Southern Agricultural Research Center, Huntley, MT, in 2011 through 2013 to determine the effect of nitrogen (N) rate, seeding rate, and weed removal timing on weed interference in barley. A delay in weed removal timing from the 3- to 4-leaf (LF) stage to the 8- to 10-LF stage of barley resulted in up to 3.5-fold increase in total weed biomass and 10% reduction in barley biomass, and this was unaffected by a N rate that ranged from 56 (low) to 168 (high) kg ha−1. The effect of N rate on barley biomass was more pronounced when weed removal was delayed from the 3- to 4-LF stage to the 8- to 10-LF stage of barley and in nontreated plots. Increasing the barley seeding rate from 38 to 152 kg ha−1increased the barley plant density by 50%, biomass by 13%, and grain yield by 29%, averaged over N rates and weed removal timing. On the basis of 5 and 10% levels of acceptable yield loss, the addition of ≥112 kg N ha−1delayed the critical timing of weed removal by at least 1.3 wk in barley, compared with the 56 kg N ha−1rate. A medium or high N rate prevented reduction in barley grain quality (plumpness and test weight) observed when the seeding rate was increased from 38 to 76 or 152 kg ha−1at the low N rate. In a separate greenhouse study, the effect of N rate on the effectiveness of various herbicides for controlling wild oat, green foxtail, kochia, or Russian thistle was investigated. Results highlighted that wild oat or green foxtail grown under 56 kg N ha−1(low N) soil required 1.4 to 2.6 times higher doses of clodinafop, fenoxaprop, flucarbazone, glyphosate, glufosinate, pinoxaden, or tralkoxydim for 50% reduction in shoot dry weights (GR50) compared with plants grown under 168 kg N ha−1(high N). Similarly, a reduced efficacy of thifensulfuron methyl + tribenuron methyl, metsulfuron methyl, or bromoxynil+pyrasulfotole was observed (evident from the GR50values) for kochia or Russian thistle grown under low- vs. high-N soil. Information gained from this research will aid in developing cost-effective, integrated weed management (IWM) strategies in cereals and in educating growers on the importance of fertilizer N management as a component of IWM programs.


Author(s):  
Adnan Noor Shah ◽  
Yingying Wu ◽  
Javaid Iqbal ◽  
Mohsin Tanveer ◽  
Saqib Bashir ◽  
...  

1993 ◽  
Vol 86 (1) ◽  
pp. 54-64 ◽  
Author(s):  
T. D. Phillips ◽  
J. P. Murphy ◽  
M. M. Goodman

Planta ◽  
2020 ◽  
Vol 252 (5) ◽  
Author(s):  
Buzi Raviv ◽  
Janardan Khadka ◽  
Bupur Swetha ◽  
Jeevan R. Singiri ◽  
Rohith Grandhi ◽  
...  

1986 ◽  
Vol 37 (5) ◽  
pp. 513 ◽  
Author(s):  
R Ferraris ◽  
DA Charles-Edwards

Well-watered crops of sweet sorghum (cv. Wray) and forage sorghum (cv. Silk) were grown in south-eastern Queensland. Treatments consisted of four sowing dates, two intra-row spacings and harvests taken at six physiological growth stages from the third ligule to 3 weeks after grain maturity. Plant density effects on the concentration of sugars and nitrogen were slight, and changes in yields of these components were a function of density effects on dry matter yields. At any growth stage, the concentration of sugars in both cultivars was decreased with delay in sowing date. The delay in sowing date led to an increased nitrogen concentration in cv. Wray, but in cv. Silk the nitrogen concentration was highest in early and late sowings. At maturity, the concentration of sugars in cv. Wray averaged 40'70, 10 times the level in cv. Silk. In both cultivars, accumulation was a near linear function of either time or radiation sum. The partitioning of carbohydrate differed little between cultivars but altered with their ontogeny. The efficiency of light use for sugars production was greater in cv. Wray and altered with ontogeny. In contrast, concentration of nitrogen was similar for both cultivars and decreased curvilinearly with time or degree days. The partitioning of nitrogen altered with ontogeny and the amount partitioned to leaf material was greater in cv. Silk pre-anthesis but was less post-anthesis. Yield of stem sugars in cv. Wray exceeded 10 t ha-1 when the crops were sown early in the season, but was only 3 t ha-1 with late-sown crops.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Carol N. Somody ◽  
John D. Nalewaja ◽  
Stephen D. Miller

Wild oat (Avena fatuaL. ♯3AVEFA) andAvena sterilisL. ♯ AVEST accessions from the United States were screened for tolerance to diallate [S-(2,3-dichloroallyl) diisopropylthiocarbamate], triallate [S-(2,3,3-trichloroallyl) diisopropylthiocarbamate], barban (4-chloro-2-butynylm-chlorocarbanilate), diclofop {2-[4-(2,4-dichlorophenoxy) phenoxy] propanoic acid}, difenzoquat (1,2-dimethyl-3,5-diphenyl-1H-pyrazolium), flamprop [N-benzoyl-N-(3-chloro-4-fluorophenyl)-DL-alanine], and MSMA (monosodium methanearsonate). Some accessions were tolerant to more than one herbicide but none were tolerant to all herbicides. Tolerance to a herbicide was not restricted to certain areas of origin of the accessions, and tolerant accessions occurred even in locations that had not been treated previously with the herbicide. In general, accessions from Southern California and Arizona were shorter, produced more tillers, and required the least number of days to panicle emergence. However, accessions from within individual areas were nearly as variable in these characteristics as the entire 1200 accessions. Tolerance of accessions to flamprop, difenzoquat, MSMA, and diclofop was not due to low leaf surface area, since the tolerant accessions usually had the most leaf surface area. All the accessions tolerant to difenzoquat, MSMA, and flamprop, and three of the four accessions tolerant to diclofop, tillered less than the susceptible accessions.


Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 599-605 ◽  
Author(s):  
Ali M. Mansooji ◽  
Joseph A. Holtum ◽  
Peter Boutsalis ◽  
John M. Matthews ◽  
Stephen B. Powles

Resistance to the methyl ester of diclofop, an aryloxyphenoxypropionate graminicide, was shown for a wild oat (Avena fatua) population from Western Australia, and marked resistance to a range of aryloxyphenoxypropionate and cyclohexanedione graminicides was detected in a winter wild oat (Avena sterilisssp.ludoviciana) population from South Australia. TheA. sterilisbiotype exhibited high levels of resistance to the aryloxyphenoxypropionate herbicides diclofop, fluazifop, haloxyfop, fenoxaprop, quizalofop, propaquizafop, and quinfurop and low levels of resistance to the cyclohexanedione herbicides sethoxydim, tralkoxydim, and cycloxydim. Ratios of LD50values for responses of resistant and susceptibleA. sterilisto the aryloxyphenoxypropionate herbicides were between 20 for propaquizafop and > 1,000 for fluazifop, and were between 2.5 and 3 for the cyclohexanedione herbicides. The LD50value for diclofop for theA. fatuabiotype was 442 g ai ha-1which was 2.7-fold that of a susceptible control. Thirty-three percent of the plants survived at the registered rate of application.


Sign in / Sign up

Export Citation Format

Share Document