Family resemblance for fasting blood glucose: the Jerusalem Lipid Research Clinic

2008 ◽  
Vol 32 (4) ◽  
pp. 222-234 ◽  
Author(s):  
Y. Friedlander ◽  
J. D. Kark ◽  
H. Bar-On
2008 ◽  
Vol 23 (4) ◽  
pp. 287-293 ◽  
Author(s):  
W. R. Williams ◽  
N. E. Morton ◽  
D. C. Rao ◽  
C. L. Gulbrandsen ◽  
G. G. Rhoads ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 5067-5070
Author(s):  
Pang Jyh Chayng ◽  
Nurul Ain ◽  
Kaswandi Md Ambia ◽  
Rahim Md Noah

The purpose of this project is to study the anti-diabetic effect of on a diabetic rat model. A total of Twenty male Sprague rats were used and it randomly distributed into four groups which are Group I: , Group II: negative control, Group III: and Group IV: and . In diabetic model were induced with via injection at the dosage of 65mg/kg. and FBG (Fasting Blood Glucose) level of diabetic rats were assessed every three days. Blood was collected via cardiac puncture at day 21 after the induction of treatment. Insulin level of the rats was assessed with the Mercodia Rat Insulin ELISA kit. FBG level of group I (12.16 ±3.96, p<0.05) and group IV (11.34 ±3.67, p<0.05) were significantly decreased. Meanwhile, the for all rats did not show any significant increase. However, the insulin level was escalated in group IV (0.74+0.25, p<0.05) significantly. The present study shows that the and the combination of and lowered blood glucose level and enhanced insulin secretion.


2018 ◽  
Vol 24 (27) ◽  
pp. 3223-3231 ◽  
Author(s):  
Luyao Li ◽  
Shiyao Xu ◽  
Tingting Guo ◽  
Shouliang Gong ◽  
Chuan Zhang

Objective: To investigate the effect of dapagliflozin on intestinal microflora in MafA-deficient mice using an animal model of diabetes. Methods: Male MafA-deficient mice were administered dapagliflozin (1.0 mg/kg/d) intragastrically for 6 weeks. Mouse body weights and fasting blood glucose levels were measured, and intestinal short-chain fatty acids were measured by gas chromatography. A series of methods was used to analyse the number of primary harmful bacteria in the faeces, and high-throughput sequencing was used to sequence the changes in intestinal flora. Results: The weight of the mice decreased after dapagliflozin gavage, and fasting blood glucose was significantly lower than that in the control group (P < 0.001). Acetic acid and butyric acid contents in the intestinal tracts of the mice increased, and the growth of harmful microorganisms, such as Clostridium perfringens, enterococci, Enterobacteriaceae, and intestinal enterococci, was inhibited. Blautia is a species found in the experimental group and was significantly different from the control and blank groups as determined by the LDA score from highthroughput sequencing. Conclusion: Dapagliflozin can reduce fasting blood glucose, decrease body weight, increase short-chain fatty acid content, regulate the intestinal microecological balance of the body and promote blood glucose and energy homeostasis.


2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


2019 ◽  
Vol 19 (8) ◽  
pp. 1148-1156 ◽  
Author(s):  
Ifeanacho Mercy Onuekwuzu ◽  
Ikewuchi Catherine Chidinma ◽  
Ikewuchi Jude Chigozie

Objective:Traditionally prepared infusions and decoctions are commonly used in the management of diabetes mellitus, in southern Nigeria; one of such is the aqueous extract of the sclerotia of Pleurotus tuberregium (“usu” milk). In this study, the effects of the extract on the body weights, tissue/ organ weights, fasting blood glucose, blood/plasma lipid profiles and atherogenic indices were investigated in normal and alloxan-induced diabetic rabbits.Methods:Diabetes mellitus was induced by the injection of alloxan (120 mg/kg body weight) via the marginal ear vein. The extract was administered orally at 100, 200 and 300 mg/kg to normal and diabetic rabbits; while metformin was administered at 50 mg/kg. The crude extract was analyzed by gas chromatography, coupled to flame ionization detector.Results:Thirty-one known flavonoids were detected, consisting mainly of isoquercetin (28.5%), luteolin (24.3%), quercetin (18.8%) and kaempferol (11.3%). Sitosterol (82.0%) and stigmasterol (12.5%) were the most abundant of the seven phytosterols detected. Compared to the diabetic control, the treatment significantly (p<0.05) lowered the weights of the kidney and liver, as well as the levels of blood glucose and triglyceride, plasma VLDL, LDL and non-HDL cholesterol, atherogenic index of plasma, cardiac risk ratio, atherogenic coefficient and Castelli’s risk index II. It, however, significantly (p<0.05) increased plasma HDL cholesterol, without significantly affecting blood total cholesterol levels.Conclusion:This study showed that the extract was hypoglycemic, and improved lipid profile and atherogenic indices, thus highlighting its cardioprotective potential, thereby supporting its use in the management of diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document