The Influence of Carbon Dioxide Concentration upon the Rate of Photosynthesis in Sinapis alba

1952 ◽  
Vol 5 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Erik K. Bonde
1999 ◽  
Vol 8 (4-5) ◽  
pp. 441-457 ◽  
Author(s):  
K. HAKALA ◽  
R. HELIÖ ◽  
E.-M. TUHKANEN

Spring wheat (Triticum aestivum L.cv.Polkka)and meadow fescue (Festuca pratensis Hudson cv. Kalevi)cwere grown in ambient and elevated (700 µl l -1 )carbon dioxide concentration both at present ambient temperatures and at temperatures 3°C higher than at present simulating a future climate.The CO2 concentrations were elevated in large (3 m in diameter)open top chambers and the temperatures in a greenhouse built over the experimental field.The photosynthetic rate of both wheat and meadow fescue was 31 –37%higher in elevated carbon dioxide (eCO2 )than in ambient CO 2 (aCO2 )throughout the growing season.The enhancement in wheat photosynthesis in eCO2 declined 10 –13 days before yellow ripeness,at which point the rate of photosynthesis in both CO 2 treatments declined.The stomatal conductance of wheat and meadow fescue was 23–36% lower in eCO2 than in aCO2 .The amount and activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) in wheat were lower under conditions of eCO2 ,except at elevated temperatures in 1993 when there was a clear yield increase.There was no clear change in the amount and activity of Rubisco in meadow fescue under eCO2 at either elevated or ambient temperature.This suggests that adaptation to elevated CO2 at biochemical level occurs only when there is insufficient sink for photosynthetic products.While the sink size of wheat can be increased only by introducing new,more productive genotypes,the sink size of meadow fescue can be regulated by fitting the cutting schedule to growth.;


1965 ◽  
Vol 43 (8) ◽  
pp. 893-900 ◽  
Author(s):  
F. R. Forsyth ◽  
I. V. Hall

The rate of apparent photosynthesis of the lowbush blueberry was determined in Warburg flasks using Pardee's CO2 buffers. A marked increase in rate of O2 evolution occurred as the temperature was raised from 13.0 to 29.5 °C. With a constant temperature of 25.0 °C the rate of O2 evolution increased as the CO2 concentration increased from 0.2 to 0.8%. The young and middle-aged leaves had a higher rate of apparent photosynthesis than the older leaves. The rate was higher at a light intensity of 1000 ft-c than at 650 ft-c at a CO2 concentration of 0.4%. At the higher light intensity a lowbush blueberry clone selected on the basis of superior agronomic characteristics had a significantly higher rate of apparent pholosynthesis than an average clone.


2018 ◽  
Author(s):  
Oscar A. Douglas-Gallardo ◽  
Cristián Gabriel Sánchez ◽  
Esteban Vöhringer-Martinez

<div> <div> <div> <p>Nowadays, the search of efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf -SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). Chemical and electronic properties of the proposed SiQDs have been studied with Density Functional Theory (DFT) and Density Functional Tight-Binding (DFTB) approach along with a Time-Dependent model based on the DFTB (TD-DFTB) framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf -SiQDs for photochemically activated carbon dioxide fixation. </p> </div> </div> </div>


2021 ◽  
Vol 54 (3) ◽  
pp. 231-243
Author(s):  
Chao Liu ◽  
Zhenghua Hu ◽  
Rui Kong ◽  
Lingfei Yu ◽  
Yuanyuan Wang ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karolina Kula ◽  
Agnieszka Kącka-Zych ◽  
Agnieszka Łapczuk-Krygier ◽  
Radomir Jasiński

Abstract The large and significant increase in carbon dioxide concentration in the Earth’s atmosphere is a serious problem for humanity. The amount of CO2 is increasing steadily which causes a harmful greenhouse effect that damages the Earth’s climate. Therefore, one of the current trends in modern chemistry and chemical technology are issues related to its utilization. This work includes the analysis of the possibility of chemical consumption of CO2 in Diels-Alder processes under non-catalytic and catalytic conditions after prior activation of the C=O bond. In addition to the obvious benefits associated with CO2 utilization, such processes open up the possibility of universal synthesis of a wide range of internal carboxylates. These studies have been performed in the framework of Molecular Electron Density Theory as a modern view of the chemical reactivity. It has been found, that explored DA reactions catalyzed by Lewis acids with the boron core, proceeds via unique stepwise mechanism with the zwitterionic intermediate. Bonding Evolution Theory (BET) analysis of the molecular mechanism associated with the DA reaction between cyclopentadiene and carbon dioxide indicates that it takes place thorough a two-stage one-step mechanism, which is initialized by formation of C–C single bond. In turn, the DA reaction between cyclopentadiene and carbon dioxide catalysed by BH3 extends in the environment of DCM, indicates that it takes place through a two-step mechanism. First path of catalysed DA reaction is characterized by 10 different phases, while the second by eight topologically different phases.


Sign in / Sign up

Export Citation Format

Share Document