The BH3 Domain of Bax is Sufficient for Interaction of Bax with itself and with other Family Members and it is Required for Induction of Apoptosis

1997 ◽  
Vol 249 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Marjo Simonen ◽  
Hansjorg Keller ◽  
Jutta Heim
1999 ◽  
Vol 19 (10) ◽  
pp. 6673-6681 ◽  
Author(s):  
Brian S. Chang ◽  
Ameeta Kelekar ◽  
Marian H. Harris ◽  
John E. Harlan ◽  
Stephen W. Fesik ◽  
...  

ABSTRACT bcl-x is a member of the bcl-2 family of genes. The major protein product, Bcl-xL, is a 233-amino-acid protein which has antiapoptotic properties. In contrast, one of the alternatively spliced transcripts of the bcl-xgene codes for the protein Bcl-xS, which lacks 63 amino acids present in Bcl-xL and has proapoptotic activity. Unlike other proapoptotic Bcl-2 family members, such as Bax and Bak, Bcl-xS does not seem to induce cell death in the absence of an additional death signal. However, Bcl-xS does interfere with the ability of Bcl-xL to antagonize Bax-induced death in transiently transfected 293 cells. Mutational analysis of Bcl-xS was conducted to identify the domains necessary to mediate its proapoptotic phenotype. Deletion mutants of Bcl-xS which still contained an intact BH3 domain retained the ability to inhibit survival through antagonism of Bcl-xL. Bcl-xS was able to form heterodimers with Bcl-xL in mammalian cells, and its ability to inhibit survival correlated with the ability to heterodimerize with Bcl-xL. Deletion mutants of Bax and Bcl-2, which lacked BH1 and BH2 domains but contained a BH3 domain, were able to antagonize the survival effect conferred by Bcl-xL. The results suggest that BH3 domains from both pro- and antiapoptotic Bcl-2 family members, while lacking an intrinsic ability to promote programmed cell death, can be potent inhibitors of Bcl-xL survival function.


2009 ◽  
Vol 186 (3) ◽  
pp. 355-362 ◽  
Author(s):  
Delphine Mérino ◽  
Maybelline Giam ◽  
Peter D. Hughes ◽  
Owen M. Siggs ◽  
Klaus Heger ◽  
...  

Proteins of the Bcl-2 family are critical regulators of apoptosis, but how its BH3-only members activate the essential effectors Bax and Bak remains controversial. The indirect activation model suggests that they simply must neutralize all of the prosurvival Bcl-2 family members, whereas the direct activation model proposes that Bim and Bid must activate Bax and Bak directly. As numerous in vitro studies have not resolved this issue, we have investigated Bim's activity in vivo by a genetic approach. Because the BH3 domain determines binding specificity for Bcl-2 relatives, we generated mice having the Bim BH3 domain replaced by that of Bad, Noxa, or Puma. The mutants bound the expected subsets of prosurvival relatives but lost interaction with Bax. Analysis of the mice showed that Bim's proapoptotic activity is not solely caused by its ability to engage its prosurvival relatives or solely to its binding to Bax. Thus, initiation of apoptosis in vivo appears to require features of both models.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3549-3549
Author(s):  
Joseph M. Gozgit ◽  
Geraldine A. Bebernitz ◽  
Pankaj Patil ◽  
Minwei Ye ◽  
Jiaquan Wu ◽  
...  

Abstract A role for Jak2 in the etiology of the myeloproliferative diseases (MPDs) was discovered with the identification of a single activating point mutation, V617F, in the pseudokinase domain of JAK2. We have developed a Jak2 inhibitor, AZ60, which inhibits in vitro JAK2 enzyme activity with a Ki of 0.45 nM. AZ60 demonstrates inhibition of STAT5 phosphorylation and proliferation in a Tel-Jak2 engineered cell line with IC50 values of 18 and 23 nM, respectively. To understand the selectivity versus other Jak kinase family members we engineered three additional cell lines containing Tel fusions with the kinase domains of Jak1, Jak3 and Tyk2. Under these settings, AZ60 demonstrates a 15 to 30-fold selectivity for Tel-Jak2 driven STAT5 phosphorylation when compared to other Jak kinase family members. AZ60 was also tested for its ability to inhibit STAT5 phosphorylation and cellular proliferation in two human hematological cell lines, Set-2 and Hel. Set-2 expresses both wt and V617F Jak2, while Hel is homozygous for the Jak2 V617F mutation. AZ60 decreased phospho-STAT5 levels in a dose-dependent manner in both Set-2 and Hel cells with IC50 values of 15 and 25 nM, respectively. Complete inhibition of proliferation and a marked induction of apoptosis were observed in both cell lines following treatment with AZ60. Induction of apoptosis by AZ60 was characterized by a time- and dose-dependent increase in caspase 3/7 activities and PARP-cleavage. These data demonstrate AZ60 is a potent and selective inhibitor of Jak2 and may help decipher the mechanisms underlying Jak2-driven myeloproliferative disease.


1997 ◽  
Vol 17 (5) ◽  
pp. 2468-2474 ◽  
Author(s):  
B Ink ◽  
M Zörnig ◽  
B Baum ◽  
N Hajibagheri ◽  
C James ◽  
...  

Apoptosis as a form of programmed cell death (PCD) in multicellular organisms is a well-established genetically controlled process that leads to elimination of unnecessary or damaged cells. Recently, PCD has also been described for unicellular organisms as a process for the socially advantageous regulation of cell survival. The human Bcl-2 family member Bak induces apoptosis in mammalian cells which is counteracted by the Bcl-x(L) protein. We show that Bak also kills the unicellular fission yeast Schizosaccharomyces pombe and that this is inhibited by coexpression of human Bcl-x(L). Moreover, the same critical BH3 domain of Bak that is required for induction of apoptosis in mammalian cells is also required for inducing death in yeast. This suggests that Bak kills mammalian and yeast cells by similar mechanisms. The phenotype of the Bak-induced death in yeast involves condensation and fragmentation of the chromatin as well as dissolution of the nuclear envelope, all of which are features of mammalian apoptosis. These data suggest that the evolutionarily conserved metazoan PCD pathway is also present in unicellular yeast.


2009 ◽  
Vol 185 (2) ◽  
pp. 279-290 ◽  
Author(s):  
Tristan Gallenne ◽  
Fabien Gautier ◽  
Lisa Oliver ◽  
Eric Hervouet ◽  
Belinda Noël ◽  
...  

It is still unclear whether the BH3-only protein Puma (p53 up-regulated modulator of apoptosis) can prime cells to death and render antiapoptotic BH3-binding Bcl-2 homologues necessary for survival through its ability to directly interact with proapoptotic Bax and activate it. In this study, we provide further evidence, using cell-free assays, that the BH3 domain of Puma binds Bax at an activation site that comprises the first helix of Bax. We also show that, in yeast, Puma interacts with Bax and triggers its killing activity when Bcl-2 homologues are absent but not when Bcl-xL is expressed. Finally, endogenous Puma is involved in the apoptotic response of human colorectal cancer cells to the Bcl-2/Bcl-xL inhibitor ABT-737, even in conditions where the expression of Mcl-1 is down-regulated. Thus, Puma is competent to trigger Bax activity by itself, thereby promoting cellular dependence on prosurvival Bcl-2 family members.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1196-1196 ◽  
Author(s):  
Akos Czibere ◽  
Raminder Singh ◽  
Ingmar Bruns ◽  
Luiz Fernando Zerbini ◽  
Rainer Haas

Abstract Acute myeloid leukemia (AML) is characterized by a disturbed differentiation and rapid clonal expansion of a malignant cell population. Activating protein-1 (AP-1) family members play an important role in the underlying pathophysiology and are commonly downregulated in AML. For example, loss of c-Jun and JunB expression is followed by rapid onset of AML in mice. But, little is known about the direct transcriptional targets of c-Jun and JunB for the repression of AML formation. Several reports showed that non-steroidal anti-inflammatory drugs (NSAID) have potent anticancer activity in vitro. To our surprise, treatment with Diclofenac or Sulindac sulfide lead not only to apoptosis and differentiation in HL-60 and THP-1 cells, but to a significantly increased expression of c-Jun, JunB and Fra2, respectively. To further characterize the NSAID mediated effects on a molecular level and in an attempt to identify potential downstream target genes of c-Jun, JunB and Fra2 we applied a combined genomics (Affymetrix HU-133A gene arrays) and proteomics (2D-DIGE) approach. Further functional assays included apoptosis-ELISA, c-Jun NH2-terminal kinase (JNK) assays, transient transfections, RNA interference, promoter reporter gene assays, quantitative RT-PCR and 4-color FACS to assess myeloid differentiation. All pathways reported here and functional data were corroborated with, to this date, 50 bone marrow derived CD34+ enriched samples from patients with newly diagnosed or refractory AML and HL-60, THP-1 and KG-1a cells. Treatment with 100μM Diclofenac or Sulindac sulfide induced apoptosis and expression of myeloid differentiation markers CD11b, CD14, CD15 and CD114 in all tested AML cell lines and in 46 of 50 patient samples. Transcriptional activation of c-Jun, JunB and Fra2 could be observed consistently in all samples where induction of apoptosis and differentiation could be seen. Furthermore, we identified growth arrest and DNA-damage-inducible gene (GADD) 45α and adipose differentiation-related protein (ADFP) as novel downstream target genes of the AP-1 family member’s c-Jun, JunB and Fra2. Within our model, activation of GADD45α expression induced by AP-1 family members lead to induction of apoptosis via a JNK-dependent pathway. In contrast, activation of ADFP did not only promote apoptosis, but also supported AP-1 mediated cell surface expression of myeloid differentiation markers CD11b, CD14, CD15 and CD114. We obtained similar effects with regards to apoptosis, differentiation and induction of GADD45α and ADFP expression when we transiently overexpressed c-Jun, JunB and Fra2 heterodimers without any additional treatment of the AML cells with NSAID. In addition, transfection of c-Jun/JunB, JunB/Fra2 and c-Jun/Fra2 heterodimers lead to a strong activation of the GADD45α promoter as measured by luciferase reporter gene assay indicating a direct link between AP-1 family members and GADD45α activation. Repression of Sulindac sulfide or Diclofenac induced expression of c-Jun, Fra2 and JunB by small interfering RNA (siRNA) abrogated expression of GADD45α, ADFP and induction of apoptosis and differentiation, showing that c-Jun, JunB and Fra2 are necessary for NSAID induced apoptosis and differentiation in AML. In summary, we found ADFP and GADD45α as downstream targets of AP-1 family member’s c-Jun, JunB and Fra-2 and novel inducers of differentiation and apoptosis in human AML. We also demonstrate that NSAID can re-induce expression of AP-1 family genes, thereby inhibit AML proliferation and induce differentiation. These findings further characterize the role of AP-1 family members in AML pathophysiology and provide a new strategy to induce apoptosis and differentiation in AML cells.


2002 ◽  
Vol 22 (11) ◽  
pp. 3577-3589 ◽  
Author(s):  
Michela Marani ◽  
Tencho Tenev ◽  
David Hancock ◽  
Julian Downward ◽  
Nicholas R. Lemoine

ABSTRACT Bim (Bcl-2-interacting mediator of cell death) is a member of the BH3 domain-only subgroup of Bcl-2 family members, for which three splice variants have been described. Bim is expressed in many healthy cell types, where it is maintained in an inactive conformation through binding to the microtubule-associated dynein motor complex. Upon certain apoptotic stimuli, Bim is released from microtubules and mediates caspase-dependent apoptosis through a mechanism that is still unclear. Here, we have identified and characterized novel splice variants of human Bim mRNA. In particular, we show that a newly discovered, small protein isoform, BimAD, is also able to induce apoptosis strongly in several human cell lines. BimAD and the previously characterized isoform BimS are shown to be capable of heterodimerizing in vivo with both death antagonists (Bcl-2 and Bcl-XL) and death agonists (Bax). Mutants of BimAD that bind to Bax but not to Bcl-2 still promote apoptosis, indicating that Bim can regulate apoptosis through direct activation of the Bax-mediated cell death pathway without interaction with antiapoptotic Bcl-2 family members. Furthermore, we have shown that the interaction of the BimS and BimAD isoforms with Bax leads to a conformational change in this protein analogous to that triggered by the BH3-only protein Bid.


Author(s):  
Paweł Hikisz ◽  
Zofia Kiliańska

AbstractPUMA (p53 upregulated modulator of apoptosis) is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family. It is a key mediator of p53-dependent and p53-independent apoptosis and was identified 10 years ago. The PUMA gene is mapped to the long arm of chromosome 19, a region that is frequently deleted in a large number of human cancers. PUMA mediates apoptosis thanks to its ability to directly bind known anti-apoptotic members of the Bcl-2 family. It mainly localizes to the mitochondria. The binding of PUMA to the inhibitory members of the Bcl-2 family (Bcl-2-like proteins) via its BH3 domain seems to be a critical regulatory step in the induction of apoptosis. It results in the displacement of the proteins Bax and/or Bak. This is followed by their activation and the formation of pore-like structures on the mitochondrial membrane, which permeabilizes the outer mitochondrial membrane, leading to mitochondrial dysfunction and caspase activation. PUMA is involved in a large number of physiological and pathological processes, including the immune response, cancer, neurodegenerative diseases and bacterial and viral infections.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57562 ◽  
Author(s):  
Ali Hosseini ◽  
Margarita Espona-Fiedler ◽  
Vanessa Soto-Cerrato ◽  
Roberto Quesada ◽  
Ricardo Pérez-Tomás ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document