scholarly journals Heparin coating reduces cell activation and mediator release in an in vitro venovenous bypass model for liver transplantation

1998 ◽  
Vol 11 (4) ◽  
pp. 252-258 ◽  
Author(s):  
Rigmor Solberg ◽  
Tim Scholz ◽  
Vibeke Videm ◽  
Cecilie Okkenhaug ◽  
Ansgar O. Aasen
2009 ◽  
Vol 129 (2) ◽  
pp. 496-498 ◽  
Author(s):  
Karsten Weller ◽  
Metin Artuc ◽  
Gary Jennings ◽  
Tim Friedrichson ◽  
Sven Guhl ◽  
...  

Perfusion ◽  
2001 ◽  
Vol 16 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Tim Scholz ◽  
Rigmor Solberg ◽  
Cecilie Okkenhaug ◽  
Vibeke Videm ◽  
Michael J Gallimore ◽  
...  

We studied the effects of bypass circuit surface heparinization on kallikrein-kinin, coagulation, fibrinolytic and complement activation in a closed model system for simulating veno-venous bypass (VVBP) in orthotopic liver transplantation (OLT). The circuits were identical to those in routine use during clinical OLT in our institution. Fresh whole human blood diluted 1: 2 with Ringer’s acetate was circulated at a non-pulsatile flow (2 l/min) and at a constant temperature (37.5°C) for 12 h. In 10 experiments, the entire inner surface of the circuits was coated with end-point attached heparin (HC). In the remaining 10, non-treated PVC tubing was used (NC). Components of the plasma kallikrein-kinin, coagulation, fibrinolytic and complement systems were analyzed using functional techniques (chromogenic peptide substrate assays) and enzyme immunoassays at baseline, 3 and 12 h. Significant activation of the initial (C3bc) and terminal (TCC) components of the complement system were found in both the NC and HC groups after 3 and 12 h: C3bc: NC: baseline =4 (3.5-7.7), 3 h=17.3* (12.5-27), 12 h=31* (17.7-63.6), HC: baseline=4.9 (3.2-6.8), 3 h=9* (6-14.4), 12 h=13.7* (7.4-18.1). TCC: NC: baseline=0.4 (0.2-0.6), 3 h=5* (0.8-11.9), 12 h: 13.1* (4.2-25.7). HC: baseline=0.5 (0.1-0.6), 3 h=0.6* (0.1-0.8), 12 h=1.2* (0.3-2) AU/ml; median and range (*: p<0.05). The C3bc and TCC concentrations were significantly higher in the NC group at 3 and 12 h, compared to the HC group: C3bc (NC vs. HC group): 3 h, p<0.001; 12 h, p<0.001. TCC (NC vs. HC group): 3 h, p<0.001; 12 h, p<0.001. Significant increases in the values of thrombin-antithrombin complexes ( p<0.003), prothrombin fragment 1+2 ( p<0.006) and plasmin-α2-antiplasmin complexes ( p=0.016) were found in the non-coated group, but not in the heparin-coated group during the observation period, showing that the coagulation and fibrinolytic systems were activated in the non-coated circuits. We conclude that heparin-coating of the internal surface of the extracorporeal perfusion circuit used for VVBP reduces activation of the plasma cascade systems in a closed venous system in vitro.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


2021 ◽  
Vol 9 (3) ◽  
pp. e002096
Author(s):  
Simon Gebremeskel ◽  
Adam Nelson ◽  
Brynn Walker ◽  
Tora Oliphant ◽  
Lynnea Lobert ◽  
...  

BackgroundOncolytic viruses reduce tumor burden in animal models and have generated promising results in clinical trials. However, it is likely that oncolytic viruses will be more effective when used in combination with other therapies. Current therapeutic approaches, including chemotherapeutics, come with dose-limiting toxicities. Another option is to combine oncolytic viruses with immunotherapeutic approaches.MethodsUsing experimental models of metastatic 4T1 breast cancer and ID8 ovarian peritoneal carcinomatosis, we examined natural killer T (NKT) cell-based immunotherapy in combination with recombinant oncolytic vesicular stomatitis virus (VSV) or reovirus. 4T1 mammary carcinoma cells or ID8 ovarian cancer cells were injected into syngeneic mice. Tumor-bearing mice were treated with VSV or reovirus followed by activation of NKT cells via the intravenous administration of autologous dendritic cells loaded with the glycolipid antigen α-galactosylceramide. The effects of VSV and reovirus on immunogenic cell death (ICD), cell viability and immunogenicity were tested in vitro.ResultsVSV or reovirus treatments followed by NKT cell activation mediated greater survival in the ID8 model than individual therapies. The regimen was less effective when the treatment order was reversed, delivering virus treatments after NKT cell activation. In the 4T1 model, VSV combined with NKT cell activation increased overall survival and decreased metastatic burden better than individual treatments. In contrast, reovirus was not effective on its own or in combination with NKT cell activation. In vitro, VSV killed a panel of tumor lines better than reovirus. VSV infection also elicited greater increases in mRNA transcripts for proinflammatory cytokines, chemokines, and antigen presentation machinery compared with reovirus. Oncolytic VSV also induced the key hallmarks of ICD (calreticulin mobilization, plus release of ATP and HMGB1), while reovirus only mobilized calreticulin.ConclusionTaken together, these results demonstrate that oncolytic VSV and NKT cell immunotherapy can be effectively combined to decrease tumor burden in models of metastatic breast and ovarian cancers. Oncolytic VSV and reovirus induced differential responses in our models which may relate to differences in virus activity or tumor susceptibility.


2021 ◽  
Vol 22 (10) ◽  
pp. 5394
Author(s):  
Tomas Lidak ◽  
Nikol Baloghova ◽  
Vladimir Korinek ◽  
Radislav Sedlacek ◽  
Jana Balounova ◽  
...  

Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an “ancient” RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3818
Author(s):  
Maud Plantinga ◽  
Denise A. M. H. van den Beemt ◽  
Ester Dünnebach ◽  
Stefan Nierkens

Induction of long-lasting immunity by dendritic cells (DCs) makes them attractive candidates for anti-tumor vaccination. Although DC vaccinations are generally considered safe, clinical responses remain inconsistent in clinical trials. This initiated studies to identify subsets of DCs with superior capabilities to induce effective and memory anti-tumor responses. The use of primary DCs has been suggested to overcome the functional limitations of ex vivo monocyte-derived DCs (moDC). The ontogeny of primary DCs has recently been revised by the introduction of DC3, which phenotypically resembles conventional (c)DC2 as well as moDC. Previously, we developed a protocol to generate cDC2s from cord blood (CB)-derived stem cells via a CD115-expressing precursor. Here, we performed index sorting and single-cell RNA-sequencing to define the heterogeneity of in vitro developed DC precursors and identified CD14+CD115+ expressing cells that develop into CD1c++DCs and the remainder cells brought about CD123+DCs, as well as assessed their potency. The maturation status and T-cell activation potential were assessed using flow cytometry. CD123+DCs were specifically prone to take up antigens but only modestly activated T-cells. In contrast, CD1c++ are highly mature and specialized in both naïve as well as antigen-experienced T-cell activation. These findings show in vitro functional diversity between cord blood stem cell-derived CD123+DC and CD1c++DCs and may advance the efficiency of DC-based vaccines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A649-A649
Author(s):  
Fiore Cattaruzza ◽  
Ayesha Nazeer ◽  
Zachary Lange ◽  
Caitlin Koski ◽  
Mikhail Hammond ◽  
...  

BackgroundTCEs are effective in leukemias but have been challenging in solid tumors due to on-target, off-tumor toxicity. Attempts to circumvent CRS include step-up dosing and/or complex designs but are unsuccessful due to toxicity and/or enhanced immunogenicity. HER2-XPAT, or XTENylated Protease-Activated bispecific T-Cell Engager, is a prodrug TCE that exploits the protease activity present in tumors vs. healthy tissue to expand the therapeutic index (TI). The core of the HER2-XPAT (PAT) consists of 2 tandem scFvs targeting CD3 and HER2. Attached to the core, two unstructured polypeptide masks (XTEN) sterically reduce target engagement and extend T1/2. Protease cleavage sites at the base of the XTEN masks enable proteolytic activation of XPATs in the tumor microenvironment, unleashing a potent TCE with short T1/2, further improving the TI. HER2-XPAT, a tumor protease-activatable prodrug with wide safety margins, can co-opt T-cells regardless of antigenic specificity to induce T-cell killing of HER2+ tumors.MethodsPreclinical studies were conducted to characterize the activity of HER2-XPAT, HER2-PAT (cleaved XPAT), and HER2-NonClv (a non-cleavable XPAT) for cytotoxicity in vitro, for anti-tumor efficacy in xenograft models, and for safety in NHPs.ResultsHER2-PAT demonstrated potent in vitro T-cell cytotoxicity (EC50 1-2pM) and target-dependent T-cell activation and cytokine production by hPBMCs. HER2-XPAT provided up to 14,000-fold protection against killing of HER2 tumor cells and no cytotoxicity against cardiomyocytes up to 1uM. In vivo, HER2-XPAT induced complete tumor regressions in BT-474 tumors with equimolar dosing to HER2-PAT, whereas HER2-NonClv had no efficacy, supporting requirement of protease cleavage for T-cell activity. In NHP, HER2-XPAT has been dose-escalated safely up to 42mg/kg (MTD). HER2-XPAT demonstrated early T-cell margination at 2 mg/kg but largely spared CRS, cytokine production, and tissue toxicity up to 42 mg/kg. PK profiles of HER2-XPAT and HER2-NonClv were comparable, consistent with ex vivo stability for cleavage when incubated in cancer pts plasma for 7 days at 37°C. HER2-PAT by continuous infusion induced lethal CRS and cytokine spikes at 0.3 mg/kg/d but was tolerated at 0.25 mg/kg/d, providing HER2-XPAT with >1300-fold protection in tolerability vs. HER2-PAT, >4 logs over cytotoxicity EC50s for HER2 cell lines, and a 20-fold safety margin over the dose required for pharmacodynamic activity.ConclusionsHER2-XPAT is a potent prodrug TCE with no CRS and a wide TI based on NHPs. With XTEN’s clinical data demonstrating low immunogenicity, the XPATs are a promising solution. IND studies are ongoing. Additional PK/PD, cytokines, safety, and efficacy data will be presented.


Sign in / Sign up

Export Citation Format

Share Document