Spread of Resistant Bacteria and Resistance Genes from Animals to Humans - The Public Health Consequences

2004 ◽  
Vol 51 (8-9) ◽  
pp. 364-369 ◽  
Author(s):  
K. Molbak
2019 ◽  
Author(s):  
Chengzhen L. Dai ◽  
Claire Duvallet ◽  
An Ni Zhang ◽  
Mariana G. Matus ◽  
Newsha Ghaeli ◽  
...  

AbstractThe spread of bacterial antibiotic resistance across human and environmental habitats is a global public health challenge. Wastewater has been implicated as a major source of antibiotic resistance in the environment, as it carries resistant bacteria and resistance genes from humans into natural ecosystems. However, different wastewater environments and antibiotic resistance genes in wastewater do not all present the same level of risk to human health. In this study, we investigate the public health relevance of antibiotic resistance found in wastewater by combining metagenomic sequencing with risk prioritization of resistance genes, analyzing samples across urban sewage system environments in multiple countries. We find that many of the resistance genes commonly found in wastewater are not readily present in humans. Ranking antibiotic resistance genes based on their potential pathogenicity and mobility reveals that most of the resistance genes in wastewater are not clinically relevant. Additionally, we show that residential wastewater resistomes pose greater risk to human health than those in wastewater treatment plant samples, and that residential wastewater can be as risky as hospital effluent. Across countries, differences in antibiotic resistance in residential wastewater can, in some cases, reflect differences in antibiotic drug consumption. Finally, we find that the flow of antibiotic resistance genes is influenced by geographical distance and environmental selection. Taken together, we demonstrate how different analytical approaches can provide greater insights into the public health relevance of antibiotic resistance in wastewater.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Meagan Marie Daoust

The healthcare trend of parental refusal or delay of childhood vaccinations will be investigated through a complex Cynefin Framework component in an economic and educational context, allowing patterns to emerge that suggest recommendations of change for the RN role and healthcare system. As a major contributing factor adding complexity to this trend, social media is heavily used for health related knowledge, making it is difficult to determine which information is most trustworthy. Missed opportunities for immunization can result, leading to economic and health consequences for the healthcare system and population. Through analysis of the powerful impact social media has on this evolving trend and public health, an upstream recommendation for RNs to respond with is to utilize reliable social media to the parents’ advantage within practice. The healthcare system should focus on incorporating vaccine-related education into existing programs and classes offered to parents, and implementing new vaccine classes for the public.


Author(s):  
Giovanni Tripepi ◽  
Mario Plebani ◽  
Giorgio Iervasi ◽  
Mercedes Gori ◽  
Daniela Leonardis ◽  
...  

Abstract Background Italy was the second country in the world, after China, to be hit by SARS-CoV-2 pandemic. The Italy’s experience teaches that steps to limit people’s movement by imposing “red zones” need to be put in place early by carefully identifying the cities to be included within these areas of quarantine. The assessment of the relationship between the distance from an established outbreak of SARS-CoV-2 infection with transmission-linked cases and mortality observed in other sites could provide useful information to identify the optimal radius of red zones. Methods We investigated the relationship between SARS-CoV-2 cases and the distance of each Italian province from the first outbreak of SARS-CoV-2 epidemic in Italy (the city of Lodi placed in the Lombardia region). In 38 provinces of Lombardia and neighboring regions, we performed a breakpoint analysis to identify the radius of the red zone around Lodi minimizing epidemic spread and mortality in neighboring cities. Results In all Italian provinces a non-linear relationship was found between SARS-CoV-2 cases and distance from Lodi. In an analysis including the provinces of Lombardia and neighboring regions, SARS-CoV-2 cases and mortality increased when the distance from Lodi reduced below 92 km and 140 km, respectively, and such relationships were amplified by ozone (O3) pollution. Conclusions The breakpoint analysis identifies the radius around the outbreak of Lodi minimizing the public health consequences of SARS-CoV-2 in neighboring cities. Such an approach can be useful to identify the red zones in future epidemics due to highly infective pathogens similar to SARS-CoV-2.


1992 ◽  
Vol 82 (10) ◽  
pp. 1328-1331 ◽  
Author(s):  
P Stephenson ◽  
M Wagner ◽  
M Badea ◽  
F Serbanescu

2016 ◽  
Vol 18 (1) ◽  
pp. 190 ◽  
Author(s):  
Diana Paola López Velandia ◽  
María Inés Torres Caycedo ◽  
Carlos Fernando Prada Quiroga

ResumenIntroducción: La resistencia antimicrobiana es un grave problema de salud pública que se encuentra en aumento. Entre los factores más importantes relacionados con la diseminación de bacterias multirresistentes está el uso inapropiado de antibióticos y la aplicación insuficiente de las medidas de prevención y control. Adicionalmente, las bacterias tienen la capacidad de mutar o generar mecanismos de transferencia de genes de resistencia mediante plásmidos, transposones e integrones. Materiales y métodos: Se hizo una revisión crítica de la literatura sobre los principales genes de resistencia Gram negativos y su impacto en la salud pública. Fueron utilizadas las bases de datos de Medline, Embase, Lilacs, ScienceDirect, Scopus, SciELO, the Cochrane Library y Lilacs. Resultados: Se presenta una revisión de literatura que describe y analiza los principales genes de resistencia a antibióticos presentes en bacilos gram negativos, su origen, evolución y diseminación a microorganismos mediante la transferencia horizontal de genes; justificando la importancia de realizar una vigilancia epidemiológica del tránsito de clones con diferentes perfiles de resistencia y principales enzimas. Conclusiones: El seguimiento de la resistencia antimicrobiana desde el punto de vista de la epidemiología molecular forma parte transcendental de la vigilancia antibiótica como lo recomienda la Organización Mundial de la Salud; pues representa el futuro del monitoreo de la resistencia.AbstractIntroduction: Antimicrobial resistance is a serious public health problem that is increasing. Among the most important factors related to the spread of multi-resistant bacteria are the inappropriate use of antibiotics and the insufficient  implementation of prevention and control measures. Additionally, bacteria have the ability to mutate or create mechanisms for transfer of resistance genes via plasmids, transposons and integrons. Materials and methods: A critical review of the literature on major resistance genes in Gram negative bacteria and its impact on public health was conducted. Data have been collected from Medline, Embase, Lilacs, ScienceDirect, Scopus, SciELO, the Cochrane Library and Lilacs. Results: A review of literature that describes and analyzes the main antibiotic resistance genes present in gram-negative bacilli is presented, as well as their origin, evolution, and subsequent spread to hundreds of species of microorganisms by Horizontal gene transfer which justifies the importance of conducting an epidemiological surveillance on transit of clones with different resistance profiles and major enzymes. Conclusions: The control of antimicrobial resistance from the point of view of molecular epidemiology is part of the antibiotic surveillance control as recommended by the World Health Organization; as it represents the future of the surveillance of resistance.


2019 ◽  
Author(s):  
Brittany J. Suttner ◽  
Eric R. Johnston ◽  
Luis H. Orellana ◽  
Luis M. Rodriguez-R ◽  
Janet K. Hatt ◽  
...  

ABSTRACTLittle is known about the public health risks associated with natural creek sediments that are affected by runoff and fecal pollution from agricultural and livestock practices. For instance, the persistence of foodborne pathogens originating from agricultural activities such as Shiga Toxin-producing E. coli (STEC) in such sediments remains poorly quantified. Towards closing these knowledge gaps, the water-sediment interface of two creeks in the Salinas River Valley was sampled over a nine-month period using metagenomics and traditional culture-based tests for STEC. Our results revealed that these sediment communities are extremely diverse and comparable to the functional and taxonomic diversity observed in soils. With our sequencing effort (~4 Gbp per library), we were unable to detect any pathogenic Escherichia coli in the metagenomes of 11 samples that had tested positive using culture-based methods, apparently due to relatively low pathogen abundance. Further, no significant differences were detected in the abundance of human- or cow-specific gut microbiome sequences compared to upstream, more pristine (control) sites, indicating natural dilution of anthropogenic inputs. Notably, a high baseline level of metagenomic reads encoding antibiotic resistance genes (ARGs) was found in all samples and was significantly higher compared to ARG reads in metagenomes from other environments, suggesting that these communities may be natural reservoirs of ARGs. Overall, our metagenomic results revealed that creek sediments are not a major sink for anthropogenic runoff and the public health risk associated with these sediment microbial communities may be low.IMPORTANCECurrent agricultural and livestock practices contribute to fecal contamination in the environment and the spread of food and water-borne disease and antibiotic resistance genes (ARGs). Traditionally, the level of pollution and risk to public health is assessed by culture-based tests for the intestinal bacterium, E. coli. However, the accuracy of these traditional methods (e.g., low quantification, and false positive signal when PCR-based) and their suitability for sediments remains unclear. We collected sediments for a time series metagenomics study from one of the most highly productive agricultural regions in the U.S. in order to assess how agricultural runoff affects the native microbial communities and if the presence of STEC in sediment samples can be detected directly by sequencing. Our study provided important information on the potential for using metagenomics as a tool for assessment of public health risk in natural environments.


Sign in / Sign up

Export Citation Format

Share Document