Biodiversity loss under existing land use and climate change: an illustration using northern South America

2007 ◽  
Vol 16 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Paul A. T. Higgins
2014 ◽  
Vol 42 (2) ◽  
pp. 127-138 ◽  
Author(s):  
ERIN C. RIORDAN ◽  
THOMAS W. GILLESPIE ◽  
LINCOLN PITCHER ◽  
STEPHANIE S. PINCETL ◽  
G. DARREL JENERETTE ◽  
...  

SUMMARYClimate and land-use changes are expected to drive high rates of environmental change and biodiversity loss in Mediterranean ecosystems this century. This paper compares the relative future impacts of land use and climate change on two vulnerable tree species native to Southern California (Juglans californica and Quercus engelmannii) using species distribution models. Under the Intergovernmental Panel for Climate Change's A1B future scenario, high levels of both projected land use and climate change could drive considerable habitat losses on these two already heavily-impacted tree species. Under scenarios of no dispersal, projected climate change poses a greater habitat loss threat relative to projected land use for both species. Assuming unlimited dispersal, climate-driven habitat gains could offset some of the losses due to both drivers, especially in J. californica which could experience net habitat gains under combined impacts of both climate change and land use. Quercus engelmannii, in contrast, could experience net habitat losses under combined impacts, even under best-case unlimited dispersal scenarios. Similarly, projected losses and gains in protected habitat are highly sensitive to dispersal scenario, with anywhere from > 60% loss in protected habitat (no dispersal) to > 170% gain in protected habitat (unlimited dispersal). The findings underscore the importance of dispersal in moderating future habitat loss for vulnerable species.


Author(s):  
Yongyut Trisurat ◽  
Rajendra P. Shrestha ◽  
Rob Alkemade

Biodiversity is the variety and variability among living organisms and ecological complexes in which they occur, and it can be divided into three levels – gene, species and ecosystems. Biodiversity is an essential component of human development and security in terms of proving ecosystem services, but also it is important for its own right to exist in the globe. Failure to conserve and use biological diversity in a sustainable manner would result in degrading environments, new and more rampant illnesses, deepening poverty and a continued pattern of inequitable and untenable growth. This chapter provides a coherent presentation of the essential concepts, key terminology, historical background of biodiversity, and drivers to biodiversity loss, especially land use/land cover and climate change. A number of land use change models and a general circulation model for prediction of future climate change and its effects on individuals, populations, species, and ecosystems are briefly described. The chapter also introduces the structure of the book including summaries of each chapter.


2020 ◽  
Author(s):  
Shermin de Silva ◽  
Tiffany Wu ◽  
Alison Thieme ◽  
Josiah Johnson ◽  
Philip Nyhus ◽  
...  

AbstractHabitat loss is a leading cause of species declines worldwide (1, 2). Using the Land Use Harmonization dataset (3) as the basis for ecological niche modelling, we quantify modelled changes in global suitable habitat over the past three centuries for Asian elephants, a megaherbivore representing diverse biomes. Between 1700-2015 over 60% of habitat suitable for elephants was lost, while average patch size declined 84-86%, and the largest patch decreased from 45% to 5%. Over half of the currently inhabited range is considered unsuitable for elephants, whereas suitable habitat is predicted to decline further from 2015-2099 across all six scenarios representing a range of emissions pathways and socioeconomic narratives. However, results vary by region and scenario in a non-linear manner, indicating that socioeconomic outcomes are as important as emissions pathways for the future of these habitats. Lao PDR, Thailand and Myanmar currently have lower elephant populations relative to the amount of available habitat. On the other hand, continued losses in densely settled areas such as India and Sri Lanka are expected to exacerbate human-elephant conflict. Only a few regions, notably peninsular Malaysia, Borneo, and Yunnan province, China, are predicted to have potential for habitat recovery. The most catastrophic losses across all range states occurred under a scenario of mid-range emissions but high regional inequities, leading to overexploitation of critical habitats. We conclude that steps to mitigate climate change must be taken alongside measures to ensure inter-regional social equity in order to safeguard these landscapes for elephants, humans and other species.SignificanceHuman land-use change is a leading driver of biodiversity loss, but effects are difficult to quantify over centennial timescales. Asian elephants occupy diverse biomes that have long been impacted by human activities and are thus indicative of the fates of numerous co-existing species. Over 60% of suitable elephant habitat has been lost since the 1700s and over half of the currently inhabited range may be considered unsuitable. Declines are predicted to continue to 2099 under six scenarios of global change across the majority of elephant range states, with the worst losses corresponding to a scenario representing mid-range emissions but high global inequity. Thus climate change mitigation strategies must include measures to facilitate equitable societies to safeguard and recover elephant landscapes, together with the unique biodiversity they represent.


Author(s):  
Hidde Boersma

AbstractLand use change has detrimental impacts on the planet. It is not only a major cause of biodiversity loss, through habitat destruction and fragmentation, but also an important driver for climate change, through deforestation and peat oxidation. Land use change is mainly driven by food production, of which meat production comprises the major share. Ecomodernists therefore feel reduction of the impact of meat production is paramount for a sustainable future. To achieve this, ecomodernists focus on intensification of the production process to produce more on less land, both through the closing of global yield gaps and through the development of integrated indoor systems like agroparks. On the demand side, ecomodernists feel a diverse strategy is needed, from the development of meat substitutes and lab meat, to the persuasion of consumers to move from beef to monogastrics like pork or chicken.


Science ◽  
2018 ◽  
Vol 362 (6412) ◽  
pp. eaau6020 ◽  
Author(s):  
C. Kremen ◽  
A. M. Merenlender

How can we manage farmlands, forests, and rangelands to respond to the triple challenge of the Anthropocene—biodiversity loss, climate change, and unsustainable land use? When managed by using biodiversity-based techniques such as agroforestry, silvopasture, diversified farming, and ecosystem-based forest management, these socioeconomic systems can help maintain biodiversity and provide habitat connectivity, thereby complementing protected areas and providing greater resilience to climate change. Simultaneously, the use of these management techniques can improve yields and profitability more sustainably, enhancing livelihoods and food security. This approach to “working lands conservation” can create landscapes that work for nature and people. However, many socioeconomic challenges impede the uptake of biodiversity-based land management practices. Although improving voluntary incentives, market instruments, environmental regulations, and governance is essential to support working lands conservation, it is community action, social movements, and broad coalitions among citizens, businesses, nonprofits, and government agencies that have the power to transform how we manage land and protect the environment.


2020 ◽  
Author(s):  
Henrique M. Pereira ◽  
Isabel M.D. Rosa ◽  
Inês S. Martins ◽  
HyeJin Kim ◽  
Paul Leadley ◽  
...  

AbstractDespite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-use and climate change from 1900 to 2050. During the 20th century provisioning services increased, but biodiversity and regulating services decreased. Similar trade-offs are projected for the coming decades, but they may be attenuated in a sustainability scenario. Future biodiversity loss from land-use change is projected to keep up with historical rates or reduce slightly, whereas losses due to climate change are projected to increase greatly. Renewed efforts are needed by governments to meet the 2050 vision of the Convention on Biological Diversity.One Sentence SummaryDevelopment pathways exist that allow for a reduction of the rates of biodiversity loss from land-use change and improvement in regulating services but climate change poses an increasing challenge.


Epidemiology ◽  
1998 ◽  
Vol 9 (Supplement) ◽  
pp. S40
Author(s):  
J McMichael

2021 ◽  
Author(s):  
Chantelle Burton ◽  
Douglas Kelley ◽  
Chris Jones ◽  
Richard Betts ◽  
Manoel Cardoso ◽  
...  

<p>Unprecedented fire events in recent years are leading to a demand for improved understanding of how climate change is already affecting fires, and how this could change in the future. Increased fire activity in South America is one of the most concerning of all the recent events, given the potential impacts on local health and the global climate from loss of large carbon stores under future environmental change. However, due to the complexity of interactions and feedbacks, and lack of complete representation of fire biogeochemistry in many climate models, there is currently low agreement on whether climate change will cause fires to become more or less frequent in the future, and what impact this will have on ecosystems. Here we use the latest climate simulations from the UK Earth System Model UKESM1 to understand feedbacks in fire, dynamic vegetation, and terrestrial carbon stores using the fire-enabled land surface model JULES-INFERNO, taking into account future scenarios of change in emissions and land use. Based on evaluation of the modelling framework performance for the present day, we address the specific policy-relevant question: how much fire-induced carbon loss will there be over South America at different global warming levels in the future? We find that burned area and fire emissions are projected to increase in the future due to hotter and drier conditions, which leads to large reductions in carbon storage especially when combined with increasing land-use conversion. The model simulates a 38% loss of carbon at 4°C under the highest emission scenario, which could be reduced to 8% if temperature rise is limited to 1.5°C. Our results provide a critical assessment of ecosystem resilience under future climate change, and could inform the way fire and land-use is managed in the future to reduce the most deleterious impacts of climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document