scholarly journals The Past, Present and Future of Elephant Landscapes in Asia

2020 ◽  
Author(s):  
Shermin de Silva ◽  
Tiffany Wu ◽  
Alison Thieme ◽  
Josiah Johnson ◽  
Philip Nyhus ◽  
...  

AbstractHabitat loss is a leading cause of species declines worldwide (1, 2). Using the Land Use Harmonization dataset (3) as the basis for ecological niche modelling, we quantify modelled changes in global suitable habitat over the past three centuries for Asian elephants, a megaherbivore representing diverse biomes. Between 1700-2015 over 60% of habitat suitable for elephants was lost, while average patch size declined 84-86%, and the largest patch decreased from 45% to 5%. Over half of the currently inhabited range is considered unsuitable for elephants, whereas suitable habitat is predicted to decline further from 2015-2099 across all six scenarios representing a range of emissions pathways and socioeconomic narratives. However, results vary by region and scenario in a non-linear manner, indicating that socioeconomic outcomes are as important as emissions pathways for the future of these habitats. Lao PDR, Thailand and Myanmar currently have lower elephant populations relative to the amount of available habitat. On the other hand, continued losses in densely settled areas such as India and Sri Lanka are expected to exacerbate human-elephant conflict. Only a few regions, notably peninsular Malaysia, Borneo, and Yunnan province, China, are predicted to have potential for habitat recovery. The most catastrophic losses across all range states occurred under a scenario of mid-range emissions but high regional inequities, leading to overexploitation of critical habitats. We conclude that steps to mitigate climate change must be taken alongside measures to ensure inter-regional social equity in order to safeguard these landscapes for elephants, humans and other species.SignificanceHuman land-use change is a leading driver of biodiversity loss, but effects are difficult to quantify over centennial timescales. Asian elephants occupy diverse biomes that have long been impacted by human activities and are thus indicative of the fates of numerous co-existing species. Over 60% of suitable elephant habitat has been lost since the 1700s and over half of the currently inhabited range may be considered unsuitable. Declines are predicted to continue to 2099 under six scenarios of global change across the majority of elephant range states, with the worst losses corresponding to a scenario representing mid-range emissions but high global inequity. Thus climate change mitigation strategies must include measures to facilitate equitable societies to safeguard and recover elephant landscapes, together with the unique biodiversity they represent.

2021 ◽  
Author(s):  
Hakan Gur

Climate and land-use changes are among the most important drivers of biodiversity loss and, moreover, their impacts on biodiversity are expected to increase further in the 21st century. In this study, the future impact of climate and land-use changes on Anatolian ground squirrels was assessed. Accordingly, a hierarchical approach with two steps was used. First, ecological niche modelling was used to assess the impact of climate change in areas accessible to Anatolian ground squirrels through dispersal (i.e. the impact of climate change). Second, based on the habitat preferences of ground squirrels, land-use data were used to assess the impact of land-use change in suitable bioclimatic areas for Anatolian ground squirrels under present and future conditions (i.e. the combined impact of both changes). Also, priority areas for the conservation of Anatolian ground squirrels were identified based on in-situ climate change refugia. This study represents a first attempt to combine niche modelling and land-use data for a species in Anatolia, one of the most vulnerable regions to the drivers of biodiversity loss, because it is the region where three of biodiversity hotspots meet, and interact. Habitat availability (i.e. suitable habitats across suitable bioclimatic areas) was projected to decline by 19-69% in the future (depending on the scenario), mainly due to the loss of suitable bioclimatic areas (47-77%, depending on the scenario) at lower elevations and in the western part of the central Anatolia and in the eastern Anatolia, suggesting that Anatolian ground squirrels will contract their range in the future, mainly due to climate change. Thus, in-situ climate change refugia were projected mainly in the eastern and southeastern parts of the central Anatolia, suggesting these regions as priority areas for the conservation of Anatolian ground squirrels.


2018 ◽  
Vol 108 (6) ◽  
pp. 792-799 ◽  
Author(s):  
G.-J. Brandon-Mong ◽  
J.E. Littlefair ◽  
K.-W. Sing ◽  
Y.-P. Lee ◽  
H.-M. Gan ◽  
...  

AbstractArthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.


2016 ◽  
Author(s):  
Kerstin Engström ◽  
Mats Lindeskog ◽  
Stefan Olin ◽  
John Hassler ◽  
Benjamin Smith

Abstract. Reducing greenhouse gas emissions to limit climate change-induced damage to the global economy and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining a climate-economy model, a socio-economic land-use model and an ecosystem model. We develop reference and mitigation scenarios based on the Shared Socio-economic Pathways (SSPs) framework. Taking emissions from the land-use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 "Taking the green road"). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Z. J. Lupala ◽  
L. P. Lusambo ◽  
Y. M. Ngaga ◽  
Angelingis A. Makatta

In Tanzania, miombo woodland is the most significant forest vegetation with both ecological and socioeconomic importance. The vegetation has been threatened from land use and cover change due to unsustainable utilization. Over the past two decades, community based forest management (CBFM) has been practiced to address the problem. Given the current need to mitigate global climate change, little is known on the influence of CBFM to the land use and cover change in miombo woodlands and therefore compromising climate change mitigation strategies. This study explored the dynamic of land use and covers change and biomass due to CBFM and established the implication to climate change mitigation. The study revealed increasing miombo woodland cover density with decreasing unsustainable utilization. The observed improvement in cover density and biomass provides potential for climate change mitigation strategies. CBFM also developed solidarity, cohesion, and social control of miombo woodlands illegal extraction. This further enhances permanence, reduces leakage, and increases accountability requirement for carbon credits. Collectively with these promising results, good land use plan at village level and introduction of alternative income generating activities can be among the best options to further reduce land use change and biomass loss in miombo woodlands.


2012 ◽  
Vol 12 (11) ◽  
pp. 3455-3471 ◽  
Author(s):  
J. K. Poussin ◽  
P. Bubeck ◽  
J. C. J. H. Aerts ◽  
P. J. Ward

Abstract. Flood risk throughout Europe has increased in the last few decades, and is projected to increase further owing to continued development in flood-prone areas and climate change. In recent years, studies have shown that adequate undertaking of semi-structural and non-structural measures can considerably decrease the costs of floods for households. However, there is little insight into how such measures can decrease the risk beyond the local level, now and in the future. To gain such insights, a modelling framework using the Damagescanner model with land-use and inundation maps for 2000 and 2030 was developed and applied to the Meuse river basin, in the region of Limburg, in the southeast of the Netherlands. The research suggests that annual flood risk may increase by up to 185% by 2030 compared with 2000, as a result of combined land-use and climate changes. The independent contributions of climate change and land-use change to the simulated increase are 108% and 37%, respectively. The risk-reduction capacity of the implementation of spatial zoning measures, which are meant to limit and regulate developments in flood-prone areas, is between 25% and 45%. Mitigation factors applied to assess the potential impact of three mitigation strategies (dry-proofing, wet-proofing, and the combination of dry- and wet-proofing) in residential areas show that these strategies have a risk-reduction capacity of between 21% and 40%, depending on their rate of implementation. Combining spatial zoning and mitigation measures could reduce the total increase in risk by up to 60%. Policy implications of these results are discussed. They focus on the undertaking of effective mitigation measures, and possible ways to increase their implementation by households.


2014 ◽  
Vol 42 (2) ◽  
pp. 127-138 ◽  
Author(s):  
ERIN C. RIORDAN ◽  
THOMAS W. GILLESPIE ◽  
LINCOLN PITCHER ◽  
STEPHANIE S. PINCETL ◽  
G. DARREL JENERETTE ◽  
...  

SUMMARYClimate and land-use changes are expected to drive high rates of environmental change and biodiversity loss in Mediterranean ecosystems this century. This paper compares the relative future impacts of land use and climate change on two vulnerable tree species native to Southern California (Juglans californica and Quercus engelmannii) using species distribution models. Under the Intergovernmental Panel for Climate Change's A1B future scenario, high levels of both projected land use and climate change could drive considerable habitat losses on these two already heavily-impacted tree species. Under scenarios of no dispersal, projected climate change poses a greater habitat loss threat relative to projected land use for both species. Assuming unlimited dispersal, climate-driven habitat gains could offset some of the losses due to both drivers, especially in J. californica which could experience net habitat gains under combined impacts of both climate change and land use. Quercus engelmannii, in contrast, could experience net habitat losses under combined impacts, even under best-case unlimited dispersal scenarios. Similarly, projected losses and gains in protected habitat are highly sensitive to dispersal scenario, with anywhere from > 60% loss in protected habitat (no dispersal) to > 170% gain in protected habitat (unlimited dispersal). The findings underscore the importance of dispersal in moderating future habitat loss for vulnerable species.


Author(s):  
Zaflis Zaim ◽  
Imam Buchori

Climate Change and global warming have brought some policy to reduce the impacts by adaptation and mitigation strategies. One adaptation strategy is to increase land use size in agriculture area base on community participation. On the other hand, sustainable development needs cooperation mainly on common investment. The aim of the study is to identify the land utilization process, role model and level of participation on customary land. We use observation and deep interview method to analyze this study. The result shows that the customary land utilization process has realized through public deliberation with local Fig.s. The agriculture programs operated with Wanatani concept or agro-forestry by housewives where multi-level strategy is mutually beneficial. Around 30 housewives have been participating in producing agriculture products, i.e., coffee, milk candy, palm sugar, and ginger powder. The level of participation especially for female farmers at RW 01, which shows a percentage of 16.6%. Generally, community participation has encouraged the gotong-royong model while has to contribute in their time, tools and materials to develop the communal shed. In conclusion, the land tenure system has taken with sharing benefits between local government & farmers. The customary tenure has recognized as one of the tenure systems in Indonesia, especially on Adat land management.


Author(s):  
Yongyut Trisurat ◽  
Rajendra P. Shrestha ◽  
Rob Alkemade

Biodiversity is the variety and variability among living organisms and ecological complexes in which they occur, and it can be divided into three levels – gene, species and ecosystems. Biodiversity is an essential component of human development and security in terms of proving ecosystem services, but also it is important for its own right to exist in the globe. Failure to conserve and use biological diversity in a sustainable manner would result in degrading environments, new and more rampant illnesses, deepening poverty and a continued pattern of inequitable and untenable growth. This chapter provides a coherent presentation of the essential concepts, key terminology, historical background of biodiversity, and drivers to biodiversity loss, especially land use/land cover and climate change. A number of land use change models and a general circulation model for prediction of future climate change and its effects on individuals, populations, species, and ecosystems are briefly described. The chapter also introduces the structure of the book including summaries of each chapter.


Sign in / Sign up

Export Citation Format

Share Document