scholarly journals Inference of allelopathy is complicated by effects of activated carbon on plant growth

2008 ◽  
Vol 178 (2) ◽  
pp. 412-423 ◽  
Author(s):  
Jennifer A. Lau ◽  
Kenneth P. Puliafico ◽  
Joseph A. Kopshever ◽  
Heidi Steltzer ◽  
Edward P. Jarvis ◽  
...  
2009 ◽  
Vol 2 (3) ◽  
pp. 230-236 ◽  
Author(s):  
E. Kathryn Barto ◽  
Don Cipollini

AbstractWe used a growth chamber experiment with first-year garlic mustard plants to explore the effects of three garlic mustard removal techniques (treatment with glyphosate, pulling out the entire plant, and clipping the shoot) on growth of the native herb pale jewelweed and its associated mycorrhizal fungi. We also explored the effects of activated carbon and mycorrhizal inocula amendments. We monitored plant height, intra- and extraradical mycorrhizal structures, root growth, and the fractal dimension of the root system. Removing as much garlic mustard root tissue as possible by hand pulling plants led to larger jewelweed plants than other removal methods. Activated carbon and mycorrhizal inocula did not improve plant growth.


AoB Plants ◽  
2015 ◽  
Vol 7 ◽  
Author(s):  
Nicole E. Nolan ◽  
Andrew Kulmatiski ◽  
Karen H. Beard ◽  
Jeanette M. Norton

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1374
Author(s):  
Manhattan Lebrun ◽  
Sylvain Bourgerie ◽  
Domenico Morabito

Metal(loid) soil pollution resulting from past and present mine activities is a serious environmental and health issues worldwide. Therefore, the remediation of those polluted areas has been a growing research interest over the last decades, especially the assisted phytoremediation. In this study, a pot experiment was set up, using a former mine technosol, highly polluted by As and Pb, to which biochar, activated carbon, or ochre was applied, alone or in combination to clover green amendment. Following amendment application, Populus x. canescens cuttings were planted. Results showed that all four amendments reduced soil acidity. However only the first three amendments immobilized As and Pb, while the green amendment drastically mobilized those two pollutants and none of the amendments improved plant growth. In conclusion, the association of clover green amendment to biochar, activated carbon, or ochre did not appear as an efficient remediation strategy in this case; although the aging of the amendments and degradation of the green amendment in the soil with time could have positive outcomes.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1810 ◽  
Author(s):  
Sudirjo ◽  
Buisman ◽  
Strik

Wetlands cover a significant part of the world’s land surface area. Wetlands are permanently or temporarily inundated with water and rich in nutrients. Therefore, wetlands equipped with Plant-Microbial Fuel Cells (Plant-MFC) can provide a new source of electricity by converting organic matter with the help of electrochemically active bacteria. In addition, sediments provide a source of electron donors to generate electricity from available (organic) matters. Eight lab-wetlands systems in the shape of flat-plate Plant-MFC were constructed. Here, four wetland compositions with activated carbon and/or marine sediment functioning as anodes were investigated for their suitability as a bioanode in a Plant-MFC system. Results show that Spartina anglica grew in all of the plant-MFCs, although the growth was less fertile in the 100% activated carbon (AC100) Plant-MFC. Based on long-term performance (2 weeks) under 1000 ohm external load, the 33% activated carbon (AC33) Plant-MFC outperformed the other plant-MFCs in terms of current density (16.1 mA/m2 plant growth area) and power density (1.04 mW/m2 plant growth area). Results also show a high diversity of microbial communities dominated by Proteobacteria with 42.5%–69.7% relative abundance. Principal Coordinates Analysis shows clear different bacterial communities between 100% marine sediment (MS100) Plant-MFC and AC33 Plant-MFC. This result indicates that the bacterial communities were affected by the anode composition. In addition, small worms (Annelida phylum) were found to live around the plant roots within the anode of the wetland with MS100. These findings show that the mixture of activated carbon and marine sediment are suitable material for bioanodes and could be useful for the application of Plant-MFC in a real wetland. Moreover, the usage of activated carbon could provide an additional function like wetland remediation or restoration, and even coastal protection.


2020 ◽  
Vol 33 (3) ◽  
pp. 660-670
Author(s):  
VANESSA FERNANDES FONSECA WELZ ◽  
JÉSSICA REZENDE TRETTEL ◽  
ANDRESSA BEZERRA NASCIMENTO ◽  
HÉLIDA MARA MAGALHÃES

ABSTRACT Sweet basil is a perennial herb. Studies on in vitro cultivation of these plant species are scarce and inconclusive. This study was carried out to investigate the effect of culture medium concentration in combination with antioxidants and plant growth regulators on the in vitro growth and biochemical activity of sweet basil seedlings. Seeds of the ‘Genovese’ cultivar were inoculated into Murashige and Skoog culture medium supplemented with activated carbon and plant growth regulators 6 -benzylaminopurine and a-naphthaleneacetic acid. The seedlings were grown under controlled conditions for 80 days and their biometric and biochemical characteristics evaluated. More abnormal seedlings were observed in the 100% medium with 30 g L-1 sucrose, 0.4 g L-1 6-benzylaminopurine, and 0.2 g L-1 a-naphthaleneacetic acid (T4) and the medium without regulators (T1). However, the T4 culture medium resulted in a higher leaf number and shoot dry mass. Antioxidant activity was higher in the seedlings grown in the culture medium composed of 100% medium + 3.0 g L-1 activated carbon + 0.4 mg L-1 6-benzylaminopurine + 0.2 mg L-1 a-naphthaleneacetic acid (T5) and that composed of 70% medium + 3.0 g L-1 activated carbon + 0.1 mg L-1 6-benzylaminopurine (T3). The enzyme superoxide dismutase showed higher activity in all culture media than catalase or ascorbate peroxidase. Sweet basil seedlings growing in T4 and T1 medium showed the highest growth rate of shoots and the lowest antioxidant activity, whereas seedlings grown in T3 medium had the highest catalase and ascorbate peroxidase activity.


2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


2020 ◽  
Author(s):  
Feng Xiao ◽  
Bin Yao ◽  
Pavankumar Challa Sasi ◽  
Svetlana Golovko ◽  
Dana Soli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document