Food Safety Objective (FSO) and Performance Objective/Heat Resistance of Pathogenic Organisms

2006 ◽  
Vol 59 (1) ◽  
pp. 50-51
Author(s):  
Alan G Williams
2006 ◽  
Vol 110 (3) ◽  
pp. 263-267 ◽  
Author(s):  
R.C. Whiting ◽  
A. Rainosek ◽  
R.L. Buchanan ◽  
M. Miliotis ◽  
D. LaBarre ◽  
...  

MRS Bulletin ◽  
2003 ◽  
Vol 28 (6) ◽  
pp. 440-444 ◽  
Author(s):  
C. W. Paul

AbstractHot-melt adhesives facilitate fast production processes because the adhesives set simply by cooling. Formulations contain polymers to provide strength and hot tack (resistance to separation while adhesive is hot), and tackifiers and/or oils to dilute the polymer entanglement network, adjust the glass-transition temperature, lower the viscosity, and improve wet-out (molecular contact of the adhesive with the substrate over the entire bonding area). Some adhesives also contain waxes to speed setting, lower viscosity, and improve heat resistance. Obtaining adequate strength and heat resistance from nonreactive hot melts requires that some component of the hot melt separate out into a dispersed but interconnected hard-phase network upon cooling. The hard phases are commonly either glassy styrene domains (for adhesives based on styrenic block copolymers) or organic crystallites (for adhesives based on waxes, olefinic copolymers, or ethylene copolymers). This article will describe first the material properties relevant to the processing and performance of hot-melt adhesives, then the chemistry and function of the specific raw materials used in hot melts, and will conclude with illustrative application examples and corresponding formulations.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Anna Pöntinen ◽  
Mariella Aalto-Araneda ◽  
Miia Lindström ◽  
Hannu Korkeala

ABSTRACT Listeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures—with plasmid-borne ClpL being a potential predictor of elevated heat resistance. Listeria monocytogenes is one of the most heat-resistant non-spore-forming food-borne pathogens and poses a notable risk to food safety, particularly when mild heat treatments are used in food processing and preparation. While general heat stress properties and response mechanisms of L. monocytogenes have been described, accessory mechanisms providing particular L. monocytogenes strains with the advantage of enhanced heat resistance are unknown. Here, we report plasmid-mediated heat resistance of L. monocytogenes for the first time. This resistance is mediated by the ATP-dependent protease ClpL. We tested the survival of two wild-type L. monocytogenes strains—both of serotype 1/2c, sequence type ST9, and high sequence identity—at high temperatures and compared their genome composition in order to identify genetic mechanisms involved in their heat survival phenotype. L. monocytogenes AT3E was more heat resistant (0.0 CFU/ml log10 reduction) than strain AL4E (1.4 CFU/ml log10 reduction) after heating at 55°C for 40 min. A prominent difference in the genome compositions of the two strains was a 58-kb plasmid (pLM58) harbored by the heat-resistant AT3E strain, suggesting plasmid-mediated heat resistance. Indeed, plasmid curing resulted in significantly decreased heat resistance (1.1 CFU/ml log10 reduction) at 55°C. pLM58 harbored a 2,115-bp open reading frame annotated as an ATP-dependent protease (ClpL)-encoding clpL gene. Introducing the clpL gene into a natively heat-sensitive L. monocytogenes strain (1.2 CFU/ml log10 reduction) significantly increased the heat resistance of the recipient strain (0.4 CFU/ml log10 reduction) at 55°C. Plasmid-borne ClpL is thus a potential predictor of elevated heat resistance in L. monocytogenes. IMPORTANCE Listeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures—with plasmid-borne ClpL being a potential predictor of elevated heat resistance.


2021 ◽  
Vol 9 (2) ◽  
pp. 403
Author(s):  
Angela Ma ◽  
Norman Neumann ◽  
Linda Chui

Despite the effectiveness of thermal inactivation processes, Escherichiacoli biofilms continue to be a persistent source of contamination in food processing environments. E. coli strains possessing the locus of heat resistance are a novel food safety threat and raises the question of whether these strains can also form biofilms. The objectives of this study were to determine biofilm formation in heat resistant E. coli isolates from clinical and environmental origins using an in-house, two-component apparatus and to characterize biofilm formation-associated genes in the isolates using whole genome sequencing. Optimal conditions for biofilm formation in each of the heat resistant isolates were determined by manipulating inoculum size, nutrient concentration, and temperature conditions. Biofilm formation in the heat resistant isolates was detected at temperatures of 24 °C and 37 °C but not at 4 °C. Furthermore, biofilm formation was observed in all environmental isolates but only one clinical isolate despite shared profiles in biofilm formation-associated genes encoded by the isolates from both sources. The circulation of heat resistant E. coli isolates with multi-stress tolerance capabilities in environments related to food processing signify that such strains may be a serious food safety and public health risk.


2006 ◽  
Vol 134 (5) ◽  
pp. 946-951 ◽  
Author(s):  
O. CERF ◽  
R. CONDRON

Stringency of milk pasteurization has been established on requirements for Coxiella burnetii as being the most heat-resistant organisms of public heath significance. This paper discusses the estimation of the efficiency of pasteurization time/temperature combinations as required in regulations for food safety. Epidemiological studies have been interpreted as C. burnetii being a significant pathogen causing clinical disease through ingestion of milk. The paper examines the evidence and challenges the designation of C. burnetii as a foodborne pathogen. Consequently it questions the need for pasteurization parameters to be established on its heat resistance characteristics.


Sign in / Sign up

Export Citation Format

Share Document