Moss Regeneration for Fen Restoration: Field and Greenhouse Experiments

2010 ◽  
Vol 18 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Martha D. Graf ◽  
Line Rochefort
1977 ◽  
Vol 57 (2) ◽  
pp. 197-203 ◽  
Author(s):  
W. A. RICE ◽  
D. C. PENNEY ◽  
M. NYBORG

The effects of soil acidity on nitrogen fixation by alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) were investigated in field experiments at 28 locations, and in greenhouse experiments using soils from these locations. The pH of the soils (limed and unlimed) varied from 4.5 to 7.2. Rhizobia populations in the soil, nodulation, and relative forage yields (yield without N/yield with N) were measured in both the field and greenhouse experiments. Rhizobium meliloti numbers, nodulation scores, and relative yields of alfalfa decreased sharply as the pH of the soils decreased below 6.0. For soils with pH 6.0 or greater, there was very little effect of pH on any of the above factors for alfalfa. Soil pH in the range studied had no effect on nodulation scores and relative yields of red clover. However, R. trifolii numbers were reduced when the pH of the soil was less than 4.9. These results demonstrate that hydrogen ion concentration is an important factor limiting alfalfa growth on acid soils of Alberta and northeastern British Columbia, but it is less important for red clover. This supports the continued use of measurements of soil pH, as well as plant-available Al and Mn for predicting crop response to lime.


1995 ◽  
Vol 22 (2) ◽  
pp. 150-154
Author(s):  
Alan C. York ◽  
John W. Wilcut

Abstract Field and greenhouse experiments evaluated purple nutsedge (Cyperus rotundas L.) and yellow nutsedge (C. esculentus L.) control with mixtures of bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] and imazethapyr {2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid} applied postemergence. Mixtures of the sodium salt of bentazon at 0.6 or 1.1 kg ae/ha and the ammonium salt of imazethapyr at 35 or 70 g ae/ha were antagonistic on purple nutsedge in field and greenhouse experiments. Mixtures of bentazon at 0.6 kg/ha and imazethapyr at 35 or 70 g/ha were additive on yellow nutsedge in field experiments but antagonistic in greenhouse experiments. Mixtures of bentazon at 1.1 kg/ha and imazethapyr at 35 or 70 g/ha were antagonistic on yellow nutsedge in field and greenhouse experiments.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
H.K. TAKANO ◽  
R.S. OLIVEIRA JR. ◽  
J. CONSTANTIN ◽  
V.F.V. SILVA ◽  
R.R. MENDES

ABSTRACT: The use of mixtures and rotation of herbicide modes of action are essential for herbicide resistance management. The purpose of this research was to evaluate different pre- and post-emergence herbicides to control goosegrass in soybean and corn. Four greenhouse experiments were conducted, one in pre-emergence and the three others in post-emergence. In pre-emergence, the number of emerged plants and the control percentage at 20, 35 and 50 days after application were evaluated. In post-emergence, the control percentage was evaluated at 14 and 28 days after application on plants with one tiller and four tillers. The use of residual herbicides to control glyphosate-resistant goosegrass is a very important tool for its effective management. The application stage is also crucial for post-emergence efficacy. Paraquat and [paraquat + diuron] are effective in controlling this species. The application of ACCase inhibiting herbicides alone seems to be more effective than their associations with glyphosate, especially in plants with four tillers. HPPD inhibiting herbicides have high synergism with atrazine and not with glyphosate.


2013 ◽  
Vol 31 (1) ◽  
pp. 165-174 ◽  
Author(s):  
N.M Correia ◽  
E.H Camilo ◽  
E.A Santos

The aim of this study was to assess the capacity of sulfentrazone applied in pre-emergence in controlling Ipomoea hederifolia and Ipomoea quamoclit as a function of the time interval between herbicide application and the occurrence of rain, and the presence of sugarcane straw on the soil surface. Two greenhouse experiments and one field experiment were conducted. For the greenhouse experiments, the study included three doses of sulfentrazone applied by spraying 0, 0.6, and 0.9 kg ha-1, two amounts of straw on the soil (0 and 10 t ha-1), and five time intervals between the application of herbicide and rain simulation (0, 20, 40, 60, and 90 days). In the field experiment, five herbicide treatments (sulfentrazone at 0.6 and 0.9 kg ha-1, sulfentrazone + hexazinone at 0.6 + 0.25 kg ha-1, amicarbazone at 1.4 kg ha-1, and imazapic at 0.147 kg ha-1) and two controls with no herbicide were studied. Management conditions with or without sugarcane straw on the soil were also assessed. From the greenhouse experiments, sulfentrazone application at 0.6 kg ha-1 was found to provide for the efficient control of I. hederifolia and I. quamoclit in a dry environment, with up to 90 days between herbicide application and rain simulation. After herbicide application, 20 mm of simulated rain was enough to leach sulfentrazone from the straw to the soil, as the biological effects observed in I. hederifolia and I. quamoclit remained unaffected. Under field conditions, either with or without sugarcane straw left on the soil, sulfentrazone alone (0.6 or 0.9 kg ha-1) or sulfentrazone combined with hexazinone (0.6 + 0.25 kg ha-1) was effective in the control of I. hederifolia and I. quamoclit, exhibiting similar or better control than amicarbazone (1.4 kg ha-1) and imazapic (0.147 kg ha-1).


Weed Science ◽  
1985 ◽  
Vol 33 (6) ◽  
pp. 894-902 ◽  
Author(s):  
William W. Donald ◽  
Roland A. Hoerauf

Applications of the substituted phthalimide growth regulators AC-94377 [1-(3-chlorophthalimido)cyclohexanecarboximide] and AC-99524 [1-tetrahydrophthalimido-cyclohexanecarboximide] to the soil surface stimulated germination and emergence of dormant wild mustard seed (Sinapsis arvensisL. ♯4SINAR) shallowly planted in soil in greenhouse experiments. Surface applications of AC-94377 enhanced the germination and emergence of dormant wild mustard seed planted 0.6 cm deep in soil from nine locations as the rates were raised from 0.4 to 3.7 kg ai/ha. Surface application of AC-94377 increased emergence rates and also extended the period of wild mustard emergence. Increasing quantities of wheat (Triticum aestivumL.) straw on the soil surface reduced the effect of surface-applied AC-94377 on shallowly buried dormant wild mustard seed. When dormant wild mustard seed were buried 1.3, 2.5, or 3.8 cm deep, surface applications of AC-94377 also stimulated greater emergence than the dormant controls from these depths, strongly suggesting that the compound moved from the surface to the depth of planting.


2017 ◽  
Vol 31 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Maxwel C. Oliveira ◽  
Amit J. Jhala ◽  
Todd Gaines ◽  
Suat Irmak ◽  
Keenan Amundsen ◽  
...  

Field and greenhouse experiments were conducted in Nebraska to (1) confirm the 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting resistant-waterhemp biotype (HPPD-RW) by quantifying the resistance levels in dose-response studies, and (2) to evaluate efficacy of PRE-only, POST-only, and PRE followed by POST herbicide programs for control of HPPD-RW in corn. Greenhouse dose-response studies confirmed that the suspected waterhemp biotype in Nebraska has evolved resistance to HPPD-inhibiting herbicides with a 2- to 18-fold resistance depending upon the type of HPPD-inhibiting herbicide being sprayed. Under field conditions, at 56 d after treatment, ≥90% control of the HPPD-RW was achieved with PRE-applied mesotrione/atrazine/S-metolachlor+acetochlor, pyroxasulfone (180 and 270 g ai ha−1), pyroxasulfone/fluthiacet-methyl/atrazine, and pyroxasulfone+saflufenacil+atrazine. Among POST-only herbicide programs, glyphosate, a premix of mesotrione/atrazine tank-mixed with diflufenzopyr/dicamba, or metribuzin, or glufosinate provided ≥92% HPPD-RW control. Herbicide combinations of different effective sites of action in mixtures provided ≥86% HPPD-RW control in PRE followed by POST herbicide programs. It is concluded that the suspected waterhemp biotype is resistant to HPPD-inhibiting herbicides and alternative herbicide programs are available for effective control in corn. The occurrence of HPPD-RW in Nebraska is significant because it limits the effectiveness of HPPD-inhibiting herbicides.


Plant Disease ◽  
2021 ◽  
Author(s):  
Juan F Cornejo-Franco ◽  
Edison Gonzalo Reyes-Proaño ◽  
Dimitre Mollov ◽  
Joseph Mowery ◽  
Diego Fernando Quito-Avila

A study was conducted to investigate epidemiological aspects of papaya virus E (PpVE), a cytorhabdovirus commonly found in papaya (Carica papaya L.) plantings of Ecuador. Besides papaya, PpVE was found in three Fabaceae weeds, including Rhynchosia minima, Centrosema plumieri and Macroptilium lathyroides; the latter being the species with the highest virus prevalence. Greenhouse experiments showed that in M. lathyroides, single infections of PpVE induce only mild leaf mosaic, whereas in mixed infections with cowpea severe mosaic virus, PpVE contributes to severe mosaic. In papaya, PpVE did not induce noticeable symptoms in single or mixed infections with papaya ringspot virus. Transmission experiments confirmed that whiteflies (Bemisia tabaci) transmit PpVE in a semi-persistent, non-propagative manner.


1999 ◽  
Vol 13 (3) ◽  
pp. 599-605 ◽  
Author(s):  
Joseph G. Masabni ◽  
Bernard H. Zandstra

Greenhouse and field experiments were conducted to confirm and quantify linuron resistance in common purslane (Portulaca oleracea) collected from a carrot (Daucus carota) field in Imlay City, MI. Preliminary evaluation was made using a flotation test kit to identify resistance to linuron and atrazine. Subsequent greenhouse experiments indicated that this common purslane was resistant to 11.2 kg/ha linuron and 179 kg/ha atrazine. The resistance ratio for linuron was > 300 and was > 400 for atrazine. The resistant common purslane was also highly resistant to diuron, cyanazine, and prometryn but had a low level of negative cross-resistance to bromoxynil. Both resistant and susceptible biotypes of common purslane were sensitive to hexazinone and bentazon.


Sign in / Sign up

Export Citation Format

Share Document