Red blood cell (RBC) age at collection and storage influences RBC membrane-associated carbohydrates and lectin binding

Transfusion ◽  
2007 ◽  
Vol 47 (6) ◽  
pp. 966-968 ◽  
Author(s):  
Rosemary L. Sparrow ◽  
Margaret F. Veale ◽  
Geraldine Healey ◽  
Katherine A. Payne
Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 469
Author(s):  
Javier Amézaga ◽  
Gurutze Ugartemendia ◽  
Aitziber Larraioz ◽  
Nerea Bretaña ◽  
Aizpea Iruretagoyena ◽  
...  

Red blood cell (RBC) membrane can reflect fatty acid (FA) contribution from diet and biosynthesis. In cancer, membrane FAs are involved in tumorigenesis and invasiveness, and are indicated as biomarkers to monitor the disease evolution as well as potential targets for therapies and nutritional strategies. The present study provides RBC membrane FA profiles in recently diagnosed breast cancer patients before starting chemotherapy treatment. Patients and controls were recruited, and their dietary habits were collected. FA lipidomic analysis of mature erythrocyte membrane phospholipids in blood samples was performed. Data were adjusted to correct for the effects of diet, body mass index (BMI), and age, revealing that patients showed lower levels of saturated fatty acids (SFA) and higher levels of monounsaturated fatty acid, cis-vaccenic (25%) than controls, with consequent differences in desaturase enzymatic index (∆9 desaturase, –13.1%). In the case of polyunsaturated fatty acids (PUFA), patients had higher values of ω-6 FA (C18:2 (+11.1%); C20:4 (+7.4%)). RBC membrane lipidomic analysis in breast cancer revealed that ω-6 pathways are favored. These results suggest new potential targets for treatments and better nutritional guidelines.


Vox Sanguinis ◽  
2020 ◽  
Vol 115 (5) ◽  
pp. 395-404 ◽  
Author(s):  
Mathijs R. Wirtz ◽  
Ruqayyah J. Almizraq ◽  
Nina C. Weber ◽  
Philip J. Norris ◽  
Suchitra Pandey ◽  
...  

2010 ◽  
Vol 73 (3) ◽  
pp. 403-420 ◽  
Author(s):  
Erica M. Pasini ◽  
Hans U. Lutz ◽  
Matthias Mann ◽  
Alan W. Thomas

Author(s):  
Xuejin Li ◽  
Zhangli Peng ◽  
Huan Lei ◽  
Ming Dao ◽  
George Em Karniadakis

This study is partially motivated by the validation of a new two-component multi-scale cell model we developed recently that treats the lipid bilayer and the cytoskeleton as two distinct components. Here, the whole cell model is validated and compared against several available experiments that examine red blood cell (RBC) mechanics, rheology and dynamics. First, we investigated RBC deformability in a microfluidic channel with a very small cross-sectional area and quantified the mechanical properties of the RBC membrane. Second, we simulated twisting torque cytometry and compared predicted rheological properties of the RBC membrane with experimental measurements. Finally, we modelled the tank-treading (TT) motion of a RBC in a shear flow and explored the effect of channel width variation on the TT frequency. We also investigated the effects of bilayer–cytoskeletal interactions on these experiments and our simulations clearly indicated that they play key roles in the determination of cell membrane mechanical, rheological and dynamical properties. These simulations serve as validation tests and moreover reveal the capabilities and limitations of the new whole cell model.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2120-2120
Author(s):  
Evan A Schwartz ◽  
Rahima Zennadi

Abstract Abstract 2120 In sickle cell disease (SCD), the mitogen-activated protein kinase (MAPK) ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human erythrocytes. ERK1/2 is involved in activation of ICAM-4-mediated sickle red blood cell (SSRBC) adhesion to the endothelium. However, other effects of the ERK1/2 activation in SSRBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are still unknown. To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2 activation, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Consistent with other RBC membrane phosphorylation studies, the phosphoproteins of SSRBC membrane ghosts with the highest number of uniquely phosphorylated peptides (>10), were ankyrin-1 of the ankyrin complex (n=33), spectrin β chain of the cytoskeleton network (n=15), and proteins of the junctional complex involved in binding integral membrane proteins to cytoskeletal proteins, including α- and β-adducins (n=22 and n=18, respectively), dematin (n=16) and protein 4.1 (n=17). In addition, several other phosphoproteins with >5 unique phosphorylated peptides, affecting RBC shape, flexibility, anion transport and protein trafficking, and adhesion, all of which contribute to the pathophysiology of SCD, were also observed. However, the MEK1/2 inhibitor U0126 was able to significantly down-regulate 37 unique RBC membrane phosphopeptides (from 21 unique phosphoproteins) in SSRBCs. We found that MEK1/2-dependent ERK1/2 activation in SSRBCs affected membrane-bound proteomes of both the junctional and ankyrin complexes, including dematin, α-adducin, β-adducin with phosphorylation of residues within the ERK1/2 consensus motif, and glycophorin A. MEK1/2/ERK1/2 signaling in SSRBCs induced changes within the actins/spectrins network as well by affecting phosphorylation of β-spectrins. Furthermore, the peptide metabotropic glutamate receptor 7 (mGlu7) also underwent serine phosphorylation at the ERK consensus motif. This could explain the rate of active glutamate transport in these cells. Significant changes only in membrane ghosts prepared from SSRBCs treated with U0126 or after addition of exogenous active ERK2 to these membrane ghosts, were also observed in the status of leucine-rich repeats and immunoglobulin-like domains protein 2, leucine-zipper-like transcriptional regulator 1, glucose transporter 1, and adenylyl cyclase-associated protein 1 (CAP1), which may potentially disturb degradation of misfolded glycoproteins and receptor ubiquitination, protein transcription, glucose transport and cAMP production, respectively. These data also suggest that a negative regulatory mechanism might exist in normal cells to prevent activation of ERK1/2-dependent phosphorylation of these membrane proteins. Among all these phosphorylated proteomes, glycophorin A was the most affected protein in SSRBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreased in both anion transport by band 3 and band 3 trafficking. The abundance of thirteen of the thirty-seven phosphopeptides was subsequently increased in normal RBCs co-incubated with recombinant ERK2, and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2. These findings expand upon the current model for the involvement of ERK1/2 signaling in RBCs. These findings also identify additional protein targets of this pathway other than the RBC adhesion molecule ICAM-4 and enhance the understanding of the mechanism of small molecule inhibitors of MEK/1/2/ERK1/2, which could be effective in ameliorating RBC hemorheology and adhesion, the hallmarks of SCD. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (21) ◽  
pp. 5527-5539
Author(s):  
Clementine Gamonet ◽  
Maxime Desmarets ◽  
Guillaume Mourey ◽  
Sabeha Biichle ◽  
Sophie Aupet ◽  
...  

Abstract Extracellular vesicles (EVs) are active components of red blood cell (RBC) concentrates and may be associated with beneficial and adverse effects of transfusion. Elucidating controllable factors associated with EV release in RBC products is thus important to better manage the quality and properties of RBC units. Erythrocyte-derived EVs (EEVs) and platelet-derived EVs (PEVs) were counted in 1226 RBC units (administered to 280 patients) using a standardized cytometry-based method. EV size and CD47 and annexin V expression were also measured. The effects of donor characteristics, processing methods, and storage duration on EV counts were analyzed by using standard comparison tests, and analysis of covariance was used to determine factors independently associated with EV counts. PEV as well as EEV counts were higher in whole-blood–filtered RBC units compared with RBC-filtered units; PEV counts were associated with filter type (higher with filters associated with higher residual platelets), and CD47 expression was higher on EEVs in RBC units stored longer. Multivariate analysis showed that EEV counts were strongly associated with filter type (P < .0001), preparation, and storage time (+25.4 EEV/µL per day [P = .01] and +42.4 EEV/µL per day [P < .0001], respectively). The only independent factor associated with PEV counts was the residual platelet count in the unit (+67.1 PEV/µL; P < .0001). Overall, processing methods have an impact on EV counts and characteristics, leading to large variations in EV quantities transfused into patients. RBC unit processing methods might be standardized to control the EV content of RBC units if any impacts on patient outcomes can be confirmed. The IMIB (Impact of Microparticles in Blood) study is ancillary to the French ABLE (Age of Transfused Blood in Critically Ill Adults) trial (ISRCTN44878718).


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 650-656 ◽  
Author(s):  
JP Leddy ◽  
SL Wilkinson ◽  
GE Kissel ◽  
ST Passador ◽  
JL Falany ◽  
...  

Abstract In our initial immunochemical study of the red blood cell (RBC) membrane proteins targeted in 20 cases of warm-antibody autoimmune hemolytic anemia (AHA), RBC eluates of 6 patients mediated immunoprecipitation (IP) of both band 3 and glycophorin A (GPA). This dual IP pattern had previously been observed with murine monoclonal antibodies (MoAbs) against the high frequency blood group antigen, Wrb (Wright), suggesting that the Wrb epitope may depend on a band 3-GPA interaction. Earlier, anti-Wrb had been identified serologically as a prominent non-Rh specificity of AHA autoantibodies. In the present study, 6 autoantibody eluates immunoprecipitating band 3 and GPA from common Wr(b+) RBCs were retested, in parallel with murine anti-Wrb MoAbs, against very rare Wr(a+b-)En(a+)RBCs. One patient's autoantibodies were unreactive with the Wr(b-) RBCs by either IP or indirect antiglobulin test (IAT) and were judged to have “pure” anti- Wrb specificity. Two other patients' autoantibodies displayed both IP and serologic evidence for anti-Wrb as a major component in combination with one or more additional specificities. However, among 3 other patients whose autoantibodies coprecipitated band 3 and GPA, there was no reduction in IP or IAT reactivity with Wr(b-) RBCs in 2 and only slight reduction in the third. We conclude (1) that human anti-Wrb autoantibodies, like their murine monoclonal counterparts, coprecipitate band 3 and GPA from human RBCs; but (2) that not all antibodies with this IP behavior have anti-Wrb serologic specificity, as defined by this donor's Wr(b-) RBCs. The possibility of an additional (non-Wrb) RBC epitope dependent on a band 3-GPA interaction is raised.


Transfusion ◽  
2018 ◽  
Vol 59 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Angelo D'Alessandro ◽  
Rachel Culp‐Hill ◽  
Julie A. Reisz ◽  
Mikayla Anderson ◽  
Xiaoyun Fu ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1243
Author(s):  
Michael C. Larson ◽  
Neil Hogg ◽  
Cheryl A. Hillery

Microparticles or microvesicles (MPs/MVs) are sub-cellular vesicles with a growing number of known biological functions. Microvesicles from a variety of parent cells within the vascular system increase in numerous pathological states. Red blood cell-derived MVs (RMVs) are relatively less studied than other types of circulating MVs despite red blood cells (RBCs) being the most abundant intravascular cell. This may be in part due the echoes of past misconceptions that RBCs were merely floating anucleate bags of hemoglobin rather than dynamic and responsive cells. The initial aim of this study was to maximize the concentration of RMVs derived from various blood or blood products by focusing on the optimal isolation conditions without creating more MVs from artificial manipulation. We found that allowing RBCs to sediment overnight resulted in a continuum in size of RBC membrane-containing fragments or vesicles extending beyond the 1 µm size limit suggested by many as the maximal size of an MV. Additionally, dilution and centrifugation factors were studied that altered the resultant MV population concentration. The heterogeneous size of RMVs was confirmed in mice models of hemolytic anemia. This methodological finding establishes a new paradigm in that it blurs the line between RBC, fragment, and RMV as well as suggests that the concentration of circulating RMVs may be widely underestimated given that centrifugation removes the majority of such RBC-derived membrane-containing particles.


Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3583-3589 ◽  
Author(s):  
AC Rybicki ◽  
S Musto ◽  
RS Schwartz

Homozygous normoblastosis (nb/nb) mice, whose red blood cell (RBC) membranes are nearly completely deficient in full-length 210-kD ankyrin, were used to study interactions between ankyrin and protein 4.2 (P4.2). Although it is unclear whether or not these proteins interact in the membrane, both ankyrin and P4.2 bind to the cytoplasmic domain of band 3 (cdb3). In addition to the complete deficiency of full- length ankyrin, nb/nb RBC membranes are also partially spectrin deficient, resulting in morphologically spherocytic and mechanically fragile cells. A new finding was that nb/nb RBC membranes are severely (approximately 73%) P4.2 deficient compared with wild type (+/+) or high reticulocyte mouse RBC membranes. Metabolic labeling of nb/nb reticulocytes showed active P4.2 synthesis at levels comparable with high reticulocyte controls suggesting that the nb/nb P4.2 deficiency was not the result of defective P4.2 synthesis. Reconstitution of nb/nb inside-out vesicles (IOVs) with human RBC ankyrin restored ankyrin levels to approximately 80% of +/+ IOV levels and increased binding of exogenously added human RBC P4.2 by approximately 60%. These results suggest that ankyrin is required for normal associations of P4.2 with the RBC membrane.


Sign in / Sign up

Export Citation Format

Share Document