The relative importance of dispersal and the local environment for species richness in two aquatic plant growth forms

Oikos ◽  
2010 ◽  
Vol 120 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Munemitsu Akasaka ◽  
Noriko Takamura
2021 ◽  
Vol 16 (2) ◽  
pp. 155-158
Author(s):  
Ezenwatah Ifeoma Susan ◽  
Ukpaka Chukwujekwu Gratius ◽  
Onyemeka Regland Michael ◽  
Afulukwe Stella Chinyere ◽  
Okoye Elochukwu Chidubem Sunday

The study on the floral diversity of Neni-Nimo watershed in Anaocha L.G.A. of Anambra State was conducted between November 2009 and July 2020. The aim of the study was to find out the species richness and the floral biodiversity of the watershed. In this study, the watershed was divided into three sites, the forested site, the fallow site and the current usage site. The experiment was laid out in a Randomized Complete Block Design. The ecological methods used in this study are the Point Centred Plotless Count sampling technique for areas dominated by trees while the Plot Count technique using quadrats were used for sampling the areas dominated by forbs, shrubs, climbers and grasses. The vegetation data collected was used to estimate the species richness of the different plant growth forms, the diversity and equitability of the various growth forms encountered were calculated using Shanon Weiners diversity index. The Shanno Weiners diversity index shows that the forested areas had the highest floral biodiversity than the fallow and current usage area. Regression analysis shows that a significant relationship exists between species abundance and floral biodiversity at a p-value of <0.05 for all plant growth forms in the watershed except for grasses and as abundance increases, diversity also increases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Martin A. Mörsdorf ◽  
Virve T. Ravolainen ◽  
Nigel G. Yoccoz ◽  
Thóra Ellen Thórhallsdóttir ◽  
Ingibjörg Svala Jónsdóttir

Tundra plant communities are often shaped by topography. Contrasting wind exposure, slopes of different inclination and landforms of different curvature affect habitat conditions and shape plant diversity patterns. The majority of tundra is also grazed by ungulates, which may alter topographically induced plant diversity patterns, but such effects may depend on the spatial scales of assessments. Here we ask whether topographically induced patterns of within (alpha) and between (beta) plant community diversity are different in contrasting grazing regimes. We studied plant communities within tundra landscapes that were located in the North and Northwest of Iceland. Half of the studied landscapes were grazed by sheep, whereas the other half was currently un-grazed and recovering for several decades (up to 60 years). Alpha and beta diversity were assessed on explicitly defined, nested spatial scales, which were determined by topographical units. Although we contrasted currently grazed vegetation to vegetation that witnessed several decades of grazing recovery, we found no statistically significant differences in plant diversity patterns. We relate these findings to the low resilience of our study system toward grazing disturbances, which has important implications for management practices in the tundra. Effects of topography on species richness were only found for specific spatial scales of analyses. Species rich topographical units were associated with relatively large biomass of plant growth forms that promote nutrient availability and potential plant productivity in the tundra, such as forbs. This suggests that biomass of such plant growth forms within habitats can be a useful proxy of potential plant productivity and may predict spatial patterns of plant species richness in tundra.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 552
Author(s):  
Janez Kermavnar ◽  
Lado Kutnar ◽  
Aleksander Marinšek

Forest herb-layer vegetation responds sensitively to environmental conditions. This paper compares drivers of both taxonomic, i.e., species richness, cover and evenness, and functional herb-layer diversity, i.e., the diversity of clonal, bud bank and leaf-height-seed plant traits. We investigated the dependence of herb-layer diversity on ecological determinants related to soil properties, climatic parameters, forest stand characteristics, and topographic and abiotic and biotic factors associated with forest floor structure. The study was conducted in different forest types in Slovenia, using vegetation and environmental data from 50 monitoring plots (400 m2 each) belonging to the ICP Forests Level I and II network. The main objective was to first identify significant ecological predictors and then quantify their relative importance. Species richness was strongly determined by forest stand characteristics, such as richness of the shrub layer, tree layer shade-casting ability as a proxy for light availability and tree species composition. It showed a clear positive relation to soil pH. Variation in herb-layer cover was also best explained by forest stand characteristics and, to a lesser extent, by structural factors such as moss cover. Species evenness was associated with tree species composition, shrub layer cover and soil pH. Various ecological determinants were decisive for the diversity of below-ground traits, i.e., clonal and bud bank traits. For these two trait groups we observed a substantial climatic signal that was completely absent for taxonomy-based measures of diversity. In contrast, above-ground leaf-height-seed (LHS) traits were driven exclusively by soil reaction and nitrogen availability. In synthesis, local stand characteristics and soil properties acted as the main controlling factors for both species and trait diversity in herb-layer communities across Slovenia, confirming many previous studies. Our findings suggest that the taxonomic and functional facets of herb-layer vegetation are mainly influenced by a similar set of ecological determinants. However, their relative importance varies among individual taxonomy- and functional trait-based diversity measures. Integrating multi-faceted approaches can provide complementary information on patterns of herb-layer diversity in European forest plant communities.


2008 ◽  
Vol 59 (10) ◽  
pp. 940 ◽  
Author(s):  
Liesbet Boven ◽  
Bram Vanschoenwinkel ◽  
Els R. De Roeck ◽  
Ann Hulsmans ◽  
Luc Brendonck

Large branchiopods are threatened worldwide by the loss and degradation of their temporary aquatic habitats owing to drainage and intensive agriculture. Sound ecological knowledge of their diversity and distribution is a prerequisite to formulate effective conservation measures. In the present study, large branchiopods were collected from 82 temporary freshwater pools belonging to five habitat types in Kiskunság (Hungary). Dormant propagule bank analysis complemented the field survey. Eleven species were found, with large branchiopods occurring in more than half of the study systems. The high regional species richness and occurrence frequency of large branchiopods make Kiskunság a true ‘hot spot’ of large branchiopod diversity. The local environment was more important than spatial factors (isolation) in explaining the presence of the most common species. Dispersal was most likely not limiting for the large branchiopods in the study area and colonisation success of different species was differentially affected by local conditions, possibly invertebrate predation risk and hydroperiod. Meadow pools and wheel tracks contributed most to regional species richness through the presence of rare and exclusive species. To conserve branchiopod diversity, we stress the importance of high habitat diversity in the landscape and the need to conserve neglected habitats such as wheel tracks.


2018 ◽  
Vol 285 (1880) ◽  
pp. 20180744 ◽  
Author(s):  
Yifan Pei ◽  
Mihai Valcu ◽  
Bart Kempenaers

Being active at different times facilitates the coexistence of functionally similar species. Hence, time partitioning might be induced by competition. However, the relative importance of direct interference and indirect exploitation competition on time partitioning remains unclear. The aim of this study was to investigate the relative importance of these two forms of competition on the occurrence of time-shifting among avian predator species. As a measure of interference competition pressure, we used the species richness of day-active avian predator species or of night-active avian predator species (i.e. species of Accipitriformes, Falconiformes and Strigiformes) in a particular geographical area (assemblage). As an estimate of exploitation competition pressure, we used the total species richness of avian predators in each assemblage. Estimates of the intensity of interference competition robustly predicted the number of Accipitriformes species that became crepuscular and the number of Strigiformes species that became day-active or strictly crepuscular. Interference competition pressure may depend on body size and on the total duration of the typical active period (day or night length). Our results support—to some extent—that smaller species are more likely to become time-shifters. Day length did not have an effect on the number of time-shifter species in the Accipitriformes. Among the large Strigiformes, more time-shifter species occur in areas where nights are shorter (i.e. where less of the typical time resource is available). However, in the small Strigiformes, we found the opposite, counterintuitive effect: more time-shifters where nights are longer. Exploitation competition may have had an additional positive effect on the number of time-shifters, but only in Accipitriformes, and the effect was not as robust. Our results thus support the interference competition hypothesis, suggesting that animals may have shifted their time of activity, despite phylogenetic constraints on the ability to do so, to reduce the costs of direct interactions. Our findings also highlight the influence of body size as a surrogate of competitive ability during encounters on time partitioning, at least among avian predators.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Camila D. Ritter ◽  
Søren Faurby ◽  
Dominic J. Bennett ◽  
Luciano N. Naka ◽  
Hans ter Steege ◽  
...  

AbstractMost knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-organisms. For this, we barcoded samples of soil, litter and insects from four localities on a west-to-east transect across Amazonia. We quantified richness as Operational Taxonomic Units (OTUs) in those samples using three molecular markers. We then compared OTU richness with species richness of two relatively well-studied organism groups in Amazonia: trees and birds. We find that OTU richness shows a declining west-to-east diversity gradient that is in agreement with the species richness patterns documented here and previously for birds and trees. These results suggest that most taxonomic groups respond to the same overall diversity gradients at large spatial scales. However, our results show a different pattern of richness in relation to habitat types, suggesting that the idiosyncrasies of each taxonomic group and peculiarities of the local environment frequently override large-scale diversity gradients. Our findings caution against using the diversity distribution of one taxonomic group as an indication of patterns of richness across all groups.


1991 ◽  
Vol 48 (1) ◽  
pp. 123-131 ◽  
Author(s):  
Michele Dionne ◽  
Carol L. Folt

In this laboratory study we measured the independent effects of macrophyte growth form, plant density, and prey abundance on the foraging rate of the pumpkinseed sunfish (Lepomis gibbosus). We demonstrate that macrophyte growth forms are not all similar in their effects on fish foraging. Prey capture rates of pumpkinseeds foraging among Scirpus validus (cylindrical stems) were 53 and 365% times greater than for Potamogeton amplifolius (leafy stems) for cladoceran (Sida crystallina) and larval damselfly (Coenagrionidae) prey, respectively. Plant growth form influenced prey capture rates more than charges in natural plant density. Plant density effects ranged from none on damselfly capture rates to a 29% decline in cladoceran capture rate over a twofold increase in plant density. Our results indicate that in plant-structured habitats, variation in plant growth form can be an important determinant of fish foraging and habitat associations.


2007 ◽  
pp. 379-384 ◽  
Author(s):  
T. Speck ◽  
N.P. Rowe
Keyword(s):  

Diversity ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 39 ◽  
Author(s):  
María Bagur ◽  
Jorge Gutiérrez ◽  
Lorena Arribas ◽  
M. Palomo

Ecosystem engineers can modulate harsh abiotic conditions, thus creating habitat for species that cannot withstand the local environment. In this study, we investigated if vacant boreholes created by the rock-boring bivalve Petricola dactylus increase species richness in the low intertidal zone of a Patagonian rocky shore characterized by intense hydrodynamic forcing and sediment scour. Invertebrate species richness was three times higher in engineered than unengineered habitats (i.e., with and without Petricola boreholes, respectively) and the increase in species richness was area-independent. The most prevalent species in unengineered areas showed strong adhesion mechanisms, whereas infaunal and vagile species were mostly restricted to boreholes. The positive influence of engineered microhabitats on species richness can largely be attributed to amelioration of physical conditions, particularly a reduction in hydrodynamic forces and sediment trapping/stabilization within boreholes. We conclude that vacant boreholes are essential microhabitats for the maintenance of biodiversity within the otherwise inhospitable low intertidal zone.


Sign in / Sign up

Export Citation Format

Share Document