OMEGA-3 POLYUNSATURATED FATTY ACIDS AFFECT LEPTIN RECEPTOR GENE EXPRESSION IN PITUITARY GH4C1 CELL LINE

2009 ◽  
Vol 16 (3) ◽  
pp. 382-393 ◽  
Author(s):  
RITA DI BENEDETTO ◽  
SERAFINA SALVATI ◽  
LUCILLA ATTORRI ◽  
ANTONELLA DI BIASE
2020 ◽  
Vol 21 (3) ◽  
pp. 741 ◽  
Author(s):  
Anamaria Balić ◽  
Domagoj Vlašić ◽  
Kristina Žužul ◽  
Branka Marinović ◽  
Zrinka Bukvić Mokos

Omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) are nowadays desirable components of oils with special dietary and functional properties. Their therapeutic and health-promoting effects have already been established in various chronic inflammatory and autoimmune diseases through various mechanisms, including modifications in cell membrane lipid composition, gene expression, cellular metabolism, and signal transduction. The application of ω-3 and ω-6 PUFAs in most common skin diseases has been examined in numerous studies, but their results and conclusions were mostly opposing and inconclusive. It seems that combined ω-6, gamma-linolenic acid (GLA), and ω-3 long-chain PUFAs supplementation exhibits the highest potential in diminishing inflammatory processes, which could be beneficial for the management of inflammatory skin diseases, such as atopic dermatitis, psoriasis, and acne. Due to significant population and individually-based genetic variations that impact PUFAs metabolism and associated metabolites, gene expression, and subsequent inflammatory responses, at this point, we could not recommend strict dietary and supplementation strategies for disease prevention and treatment that will be appropriate for all. Well-balanced nutrition and additional anti-inflammatory PUFA-based supplementation should be encouraged in a targeted manner for individuals in need to provide better management of skin diseases but, most importantly, to maintain and improve overall skin health.


2007 ◽  
Vol 77 (Suppl_1) ◽  
pp. 171-171
Author(s):  
Chad O'Gorman ◽  
Elizabeth Gonzales ◽  
Matthew Eaton ◽  
Paige Williams ◽  
Maribel Reyna ◽  
...  

2001 ◽  
Vol 169 (3) ◽  
pp. 465-476 ◽  
Author(s):  
L Thomas ◽  
JM Wallace ◽  
RP Aitken ◽  
JG Mercer ◽  
P Trayhurn ◽  
...  

This study examined the pattern of circulating leptin in age-matched sheep during adolescent pregnancy, and its relationship with maternal dietary intake, body composition and tissue expression of the leptin gene. Overfeeding the adolescent pregnant ewe results in rapid maternal growth at the expense of the placenta, leading to growth restriction in the fetus, compared with normal fed controls. Our results demonstrate that, in the adolescent ewe, overfeeding throughout pregnancy was associated with higher maternal leptin concentrations, when compared with moderately fed controls (P<0.05), with no peak in circulating leptin towards the end of pregnancy. There was a close correlation between indices of body composition and circulating leptin levels at day 104 of gestation and at term (P<0.03). Further, when the dietary intake was switched from moderate to high, or high to moderate, at day 50 of gestation, circulating leptin levels changed rapidly, in parallel with the changes in dietary intake. Leptin mRNA levels and leptin protein in perirenal adipose tissue samples, taken at day 128 of gestation, were higher in overfed dams (P<0.04), suggesting that adipose tissue was the source of the increase in circulating leptin in the overnourished ewes. Leptin protein was also detected in placenta but leptin gene expression was negligible. However, leptin receptor gene expression was detected in the ovine placenta, suggesting that the placenta is a target organ for leptin. A negative association existed between maternal circulating leptin and fetal birth weight, placental/cotyledon weight and cotyledon number. In conclusion, in this particular ovine model, hyperleptinaemia was not observed during late pregnancy. Instead, circulating leptin concentrations reflected increased levels of leptin secretion by adipose tissue primarily as a result of the increase in body fat deposition, due to overfeeding. However, there appears to be a direct effect of overfeeding, particularly in the short term. In the nutritional switch-over study, circulating leptin concentrations changed within 48 h of the change in dietary intake. The presence of leptin protein and leptin receptor gene expression in the placenta suggests that leptin could be involved in nutrient partitioning during placental and/or fetal development.


Digestion ◽  
1996 ◽  
Vol 57 (3) ◽  
pp. 196-200 ◽  
Author(s):  
Sazzad Hassan ◽  
Yoshikazu Kinoshita ◽  
Ding Min ◽  
Hirohisa Nakata ◽  
Kiyohiko Kishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document