EFFECT OF DEFATTED MELON (CITRULLUS VULGARIS SCHRAD.) KERNEL FLOUR SUPPLEMENTATION ON THE STORAGE STABILITY AND MICROBIOLOGICAL QUALITY OF REFRIGERATED BEEF-BASED SAUSAGES

2008 ◽  
Vol 32 (2) ◽  
pp. 143-158 ◽  
Author(s):  
M.A. IGYOR ◽  
J.A. ANKELI ◽  
G.I.O. BADIFU
2017 ◽  
Vol 5 (6) ◽  
pp. 1098-1105 ◽  
Author(s):  
Phoebe P. Kaddumukasa ◽  
Samuel M. Imathiu ◽  
Julius M. Mathara ◽  
Jesca L. Nakavuma

2015 ◽  
Author(s):  
◽  
Temitope Deborah Awobusuyi

Vitamin A deficiency (VAD) is a major health problem in sub-Saharan Africa where maize is a staple food. Amahewu, a fermented non-alcoholic,maize-based beverage is a popular drink in southern Africa.The aim of this study is to produce a provitamin A enriched and acceptable amahewu, using provitamin A biofortified maize which can be used to alleviate VAD. The optimal processing parameters for the production of amahewu using provitamin A-biofortified maize were determined. Amahewu samples were prepared with reference to a traditional method by boiling a mixture of maize meal and water (rato:1:7) at 90ᴼC, with occasional stirring, for 15 minutes. The resulting porridge was left to cool to approximately 40ᴼC, before inoculation and fermentation at 37oC. Processing parameters investigated were inoculum types (wheat bran (WB), maize malt (MM) and Lactobacillus mixed starter culture) and inoculum concentration (0.5,1 and 2% (w/w)) and varieties of provitamin A maize (PVAH 62 and PVAH 19). Wheat flour (at 2%) was used as reference inoculum to conform to the traditional practice. White maize amahewu samples processed in the same way as those of provitamin A-biofortified maize were used as references. Provitamin A amahewu samples were produced using the optimized processing parameters and then analysed for nutrient composition, including carotenoids, protein, ash, amino acids, mineral profile and invitro protein digestibility. The consumer acceptability of amahewu samples was evaluated using regular consumers of amahewu (n= 54), who rated the acceptability of the samples on a 9-point hedonic scale (1:disliked extremely, 9:liked extremely). The storage stability of the provitamin A biofortified amahewu samples was assessed by subjecting the samples to different storage conditions: 4ᴼC, 25ᴼC and 37ᴼC. The microbiological quality of the stored samples was monitored by taking samples every day for a period of five days to analyse for the presence of aerobic and anaerobic bacterial spore formers, E.coli and moulds. The provitamin A maize variety did not influence pH and Total titratable acidity (TTA) of amahewu samples during fermentation. As expected, there was a substantial drop in pH with fermentation time. After 24 hours, all the samples of amahewu, including those made with white maize, prepared using malted maize and wheat bran inocula reached a pH of 3.3-3.8 and TTA of 0.3-0.6, which were within acceptable range for amahewu. The addition of a starter culture substantially reduced fermentation time, from 24 to six hours. The inoculum of WB and MM, respectively, at a concentration of 0.5%, with or without starter culture (5%), were found to be suitable for the production of amahewu using provitamin A biofortified maize. The total provitamin A content of amahewu samples, produced using optimised parameters (i.e one variety of provitamin A biofortified maize, 0.5% MM, WB with or without starter culture), ranged from 3.3-3.8 μg/g (DW). The percentage retention of total provitamin A ranged from 79%- 90% (DW). The lowest percentage retention was observed in products fermented with the addition of starter culture. The gross energy of the amahewu samples was approx. 20 MJ/kg. There was a slight increase in the lysine content of amahewu after fermentation. The protein digestibility (approx. 91%) of amahewu samples was slightly higher than that of raw provitamin A maize (86%). Amahewu processed using starter cultures had a slightly higher iron content than those processed without a starter culture. Consumer acceptability data showed that amahewu samples made with provitamin A biofortified maize were slightly more acceptable (average rating for overall acceptability was 7.0 ± 1.2), compared to those made with white maize (average rating for overall acceptability was 6.4 ± 0.8). Principal component analysis (PCA) of Amahewu sensory data showed that 71% of variation was due to maize types and 18% of variation may be due to the inoculum used during fermentation. The use of a starter culture improves the taste and aroma acceptability of amahewu. Segmentation of consumers based on overall linking for amahewu revealed three clusters, named A, B and C. Cluster A consisted of most consumers (43%), who liked amahewu moderately. About 60% of these consumers were females. Cluster B consisted of most of the consumers (31%) who were undecided about their liking for the product. Approximately 52% of the consumers in this cluster were female. Cluster C consisted of consumers (26%) who liked amahewu very much. Sixty-four percent (64%) of these consumers were female. It appeared that gender may have some influence on overall liking for amahewu, as cluster B, consisting of undecided consumers, had more male consumers compared to clusters A and C. Age did not seem to be significantly associated with the liking of amahewu. Provitamin A biofortified amahewu samples stored under refrigerated conditions (4ᴼC) had better microbiological quality compared to those stored at 25ᴼC and 37ᴼC. Refrigeration effectively maintains the microbiological quality of amahewu for about three of days. Provitamin A biofortified maize can be used to produce β-carotene enriched amahewu that is acceptable to consumers following the processing method that is traditionally employed for white amahewu at both domestic and commercial level. Provitamin A biofortified amahewu has the potential to make a significant contribution towards alleviating VAD among rural communities, who are the most vulnerable to VAD.


2005 ◽  
Vol 30 (03) ◽  
Author(s):  
J Kehr ◽  
B Morales ◽  
P Contreras ◽  
L Castillo ◽  
W Aranda

Domiati cheese is the most popular brand of cheese ripened in brine in the Middle East in terms of consumed quantities. This study was performed to investigate the impact of the microbiological quality of the used raw materials, the applied traditional processing techniques and ripening period on the quality and safety of the produced cheese. Three hundred random composite samples were collected from three factories at Fayoum Governorate, Egypt. Collected samples represent twenty-five each of: raw milk, table salt, calf rennet, microbial rennet, water, environmental air, whey, fresh cheese, ripened cheese & swabs from: worker hands; cheese molds and utensils; tanks. All samples were examined microbiologically for Standard Plate Count (SPC), coliforms count, Staphylococcus aureus (S. aureus) count, total yeast & mould count, presence of E. coli, Salmonellae and Listeria monocytogenes (L. monocytogenes). The mean value of SPC, coliforms, S. aureus and total yeast & mould counts ranged from (79×102 CFU/m3 for air to 13×108 CFU/g for fresh cheese), (7×102 MPN/ cm2 for tank swabs to 80×106 MPN/ml for raw milk), (9×102 CFU/g for salt to 69×106 CFU/g for fresh cheese) and (2×102 CFU/cm2 for hand swabs to 60×104 CFU/g for fresh cheese), respectively. Whereas, E. coli, Salmonella and L. monocytogenes failed to be detected in all examined samples. There were significant differences in all determined microbiological parameters (p ≤0.05) between fresh and ripened cheese which may be attributed to different adverse conditions such as water activity, pH, salt content and temperature carried out to improve the quality of the product.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 75-79 ◽  
Author(s):  
M. Würzer ◽  
A. Wiedenmann ◽  
K. Botzenhart

In Germany the application of procedures such as flocculation and filtration in the preparation of drinking water results in the annual production of an estimated 500,000 t of sediments and sludges. Some of these residues have a potential for being reused, for example in agriculture, forestry, brickworks or waste water treatment. To assess the microbiological quality of residues from waterworks methods for the detection of enterobacteria, Escherichia coli, Salmonella, Pseudomonas aeruginosa, Legionella, poliovirus, Ascaris suis eggs and Cryptosporidium have been evaluated regarding their detection limits and were applied to various residues from German waterworks. Results show that sediments and sludges may contain pathogenic bacteria, viruses and protista. When residues from waterworks are intended to be reused in agriculture or forestry the microbiological quality should therefore be considered.


2019 ◽  
Vol 15 (1) ◽  
pp. 31-39
Author(s):  
Oluwadara Oluwaseun Alegbeleye ◽  
Wasiu Akinloye Oyebisi Afolabi ◽  
Beatrice Oluwatoyin Opeolu ◽  
Amin Mousavi Khaneghah

Background: Bacterial counts in ready-to-eat foods are a key factor in assessing the microbiological quality and safety of food. Periodic assessment of the microbiological quality of food is necessary to develop a robust database and help to ensure food safety. </P><P> Methods: The bacterial contamination of a total of 336 bread samples collected from two bakeries and 10 vendors in Ojoo Area of Ibadan, Oyo-State, Nigeria (December 2014 -June 2015) was evaluated. The microbiological quality of the bread loaves was investigated using standard microbiological methods (morphological, phenotypic and molecular characterization). </P><P> Results: The results showed that the number of contaminated samples among the vended bread samples was higher than the bakery bread samples and can be summarized as Bacillus megaterium (4.30%), Staphylococcus arlettae (0.005%), Staphylococcus saprophyticus (2.78%), Citrobacter freundii (2.40%), Bacillus flexus (1.64%), Bacillus species (49.59%), Pseudomonas aeruginosa (4.12%), Pseudomonas fluorescens (0.92%), Pseudomonas species (0.045%), Escherichia coli (30.44%) Klebsiella sp. (0.040%) and Aeromonas hydrophila (3.72%). </P><P> Conclusion: The findings demonstrate that the bread samples which become contaminated after transport and handling can be considered a potential hazard to human health in the area. More stringent adherence to food safety regulations should be encouraged and enforced by the appropriate authorities. The findings of this study may be adopted to improve the hygienic conditions of bread distribution chain in the area as well as in other regions of the World.


2020 ◽  
Vol 164 ◽  
pp. 06012
Author(s):  
Vera Demchenko ◽  
Irina Asfondiarova ◽  
Nina Katkova ◽  
Marina Ivanova ◽  
Elena Belokurova

The priority in improving the existing methods of processing fish is salting with the use of food additives with different functional orientations. The aim of the study was the development of preserves with the introduction of lactate-containing additives and using sonochemical technologies; examination of the quality of the products obtained according to organoleptic and microbiological safety indicators. The article proposes a resource-saving technology for the production of fish products with prolonged shelf life due to the use of a complex food additive consisting of lactic, acetic, propionic acids and their salts in different proportions with subsequent ultrasonic treatment using the ultrasonic generator of the Wave series model UZTA-0 2/22-OM. There was established the optimal mode of using the ultrasonic processing power of 75 W / m2 in the manufacture of fish preserves from herring. Organoleptic and microbiological quality indicators were studied during storage of preserved products with the addition of additives and ultrasonic treatment compared to the control. Organoleptic assessment was carried out on a five-point scale, microbiological indicators were studied by standard methods. The Dilactin Forte Plus dietary supplement in the composition of preserves in the amount of 3% and in combination with the use of sonochemical technologies makes it possible to obtain a safe high-quality fish product. Manufactured preserves at a storage temperature of 0 ± 2 ° C can maintain their high quality for 5 months.


2009 ◽  
Vol 72 (4) ◽  
pp. 856-859 ◽  
Author(s):  
HOIKYUNG KIM ◽  
YOUNGJUN LEE ◽  
LARRY R. BEUCHAT ◽  
BONG-JUNE YOON ◽  
JEE-HOON RYU

Sprouted vegetable seeds used as food have been implicated as sources of outbreaks of Salmonella and Escherichia coli O157:H7 infections. We profiled the microbiological quality of sprouts and seeds sold at retail shops in Seoul, Korea. Ninety samples of radish sprouts and mixed sprouts purchased at department stores, supermarkets, and traditional markets and 96 samples of radish, alfalfa, and turnip seeds purchased from online stores were analyzed to determine the number of total aerobic bacteria (TAB) and molds or yeasts (MY) and the incidence of Salmonella, E. coli O157:H7, and Enterobacter sakazakii. Significantly higher numbers of TAB (7.52 log CFU/g) and MY (7.36 log CFU/g) were present on mixed sprouts than on radish sprouts (6.97 and 6.50 CFU/g, respectively). Populations of TAB and MY on the sprouts were not significantly affected by location of purchase. Radish seeds contained TAB and MY populations of 4.08 and 2.42 log CFU/g, respectively, whereas populations of TAB were only 2.54 to 2.84 log CFU/g and populations of MY were 0.82 to 1.69 log CFU/g on alfalfa and turnip seeds, respectively. Salmonella and E. coli O157:H7 were not detected on any of the sprout and seed samples tested. E. sakazakii was not found on seeds, but 13.3% of the mixed sprout samples contained this potentially pathogenic bacterium.


Sign in / Sign up

Export Citation Format

Share Document