PHOSPHATE MARINATION OF PORK LOINS AT HIGH AND LOW INJECTION PRESSURES

2003 ◽  
Vol 26 (1) ◽  
pp. 1-14 ◽  
Author(s):  
NOEL A. DETIENNE ◽  
A. ESTES REYNOLDS ◽  
LOUISE WICKER
Keyword(s):  
2000 ◽  
Author(s):  
David Nielsen ◽  
Ranga Pitchumani

Abstract Variabilities in the preform structure in situ in the mold are an acknowledged challenge to effective permeation control in the Resin Transfer Molding (RTM) process. An intelligent model-based controller is developed which utilizes real-time virtual sensing of the permeability to derive optimal decisions on controlling the injection pressures at the mold inlet ports so as to track a desired flowfront progression during resin permeation. This model-based optimal controller employs a neural network-based predictor that models the flowfront progression, and a simulated annealing-based optimizer that optimizes the injection pressures used during actual control. Preform permeability is virtually sensed in real-time, based on the flowfront velocities and local pressure gradient estimations along the flowfront. Results are presented which illustrate the ability of the controller in accurately steering the flowfront for various fill scenarios and preform geometries.


Author(s):  
Shahril Nizam Mohamed Soid ◽  
Mohamad Ariff Subri ◽  
Muhammad-Najib Abdul-Hamid ◽  
Mohd Riduan Ibrahim ◽  
Muhammad Iqbal Ahmad

2018 ◽  
Vol 64 (5) ◽  
pp. 530 ◽  
Author(s):  
Andres Perez ◽  
VALERIANO SALOMON ALVAREZ ◽  
FLORENCIO SANCHEZ ◽  
ABRAHAM MEDINA

This paper discusses experimentally the advance and distribution of preformed,wet aqueous foam ow when it is injected into a horizontal rectangularcell with dierent transversal opening channels. Speeds of the simultaneousfoam fronts in each channel were obtained experimentally. Therelationship between bubble size and the opening of the channel, the apparentviscosity and the friction factor were obtained with experimental data.Experiments were performed under three dierent injection pressures. Thediversion of the foam ow into the transversal channel was also studied. Withthese experiments we show that the foam ow stream is aected by suddenchanges in the geometry.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2281 ◽  
Author(s):  
Mhadi A. Ismael ◽  
Morgan Heikal ◽  
A. A. Aziz ◽  
Cyril Crua ◽  
Mohmmed El-Adawy ◽  
...  

Water-in-diesel emulsions potentially favor the occurrence of micro-explosions when exposed to elevated temperatures, thereby improving the mixing of fuels with the ambient gas. The distributions and sizes of both spray and dispersed water droplets have a significant effect on puffing and micro-explosion behavior. Although the injection pressure is likely to alter the properties of emulsions, this effect on the spray flow puffing and micro-explosion has not been reported. To investigate this, we injected a fuel spray using a microsyringe needle into a high-temperature environment to investigate the droplets’ behavior. Injection pressures were varied at 10% v/v water content, the samples were imaged using a digital microscope, and the dispersed droplet size distributions were extracted using a purpose-built image processing algorithm. A high-speed camera coupled with a long-distance microscope objective was then used to capture the emulsion spray droplets. Our measurements indicated that the secondary atomization was significantly affected by the injection pressure which reduced the dispersed droplet size and hence caused a delay in puffing. At high injection pressure (500, 1000, and 1500 bar), the water was evaporated during the spray and although there was not enough droplet residence time, puffing and micro-explosion were clearly observed. This study suggests that high injection pressures have a detrimental effect on the secondary atomization of water-in-diesel emulsions.


2021 ◽  
Author(s):  
Kabir Hasan Yar'Adua ◽  
Idoko Job John ◽  
Abubakar Jibril Abbas ◽  
Salihu M. Suleiman ◽  
Abdullahi A. Ahmadu ◽  
...  

Abstract Despite the recent wide embrace of mechanical descaling approaches for cleaning scales in petroleum production tubings and similar conduits with the use of high-pressure (HP) water jets, the process is still associated with downhole backpressure and well integrity challenges. While the introduction of sterling beads to replace sand particles in the water recorded high successes in maintaining well completion integrity after scale removal in some recent applications of this technique, it is, unfortunately, still not without questions of environmental degradation. Furthermore, the single nozzle, solids-free, aerated jetting descaling technique – recently published widely – is categorized with low scale surface area of contact, low descaling efficiency and subsequent high descaling rig time. The modifications to mechanical descaling techniques proposed in this work involve the use of three high-pressure flat fan nozzles of varying nozzles arrangements, standoff distances and injection pressures to remove soft scale deposits in oil and gas production tubings and similar circular conduits. This experiment provides further insights into the removal of paraffin scales of various shapes at different descaling conditions of injection pressures, stand-off distances and nozzle arrangements with the use of freshwater. The results obtained from this study also show consistency with findings from earlier works on the same subject.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Dung Nguyen ◽  
Damon Honnery

While much is known on the effect of combustion chamber geometry on spray evolution in engines, less is known about its role in laboratory combustion chambers. This paper reports on a study, which investigates the effect of internal chamber geometry on the penetration and spreading angle of common rail nonreacting diesel sprays at room temperature conditions in a cylindrical constant volume chamber. This chamber has dimensions similar to those used in the literature. Spray chamber geometry was modified to yield three different chamber height-to-diameter ratios and two different nozzle stand-off distances. Sprays from three nozzles, two single-hole nozzles with different diameter and one twin-hole nozzle (THN), were examined for two injection pressures of 100 MPa and 150 MPa into two chamber pressures of 0.1 MPa and 5 MPa. To characterize the spray structure, a volume illumination method was used to study the spray tip penetration/speed and spread angle. For both injection pressures used with chamber pressure of 5 MPa, little sensitivity to vessel geometry was found in penetration distance and tip speed for variation in height to diameter ratio from 0.6 to 2.6 and variation in nozzle stand-off distance from 2 mm to 54 mm. For atmospheric chamber pressure, sensitivity to chamber geometry was evident and found to vary with nozzle type. Spread angle was found more largely affected by the calculation method and very sensitive to the image intensity threshold value for the cases investigated.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3080
Author(s):  
Xiangting Wang ◽  
Haiqiao Wei ◽  
Jiaying Pan ◽  
Zhen Hu ◽  
Zeyuan Zheng ◽  
...  

In high altitude regions, affected by the low-pressure and low-temperature atmosphere, diesel knock is likely to be encountered in heavy-duty engines operating at low-speed and high-load conditions. Pressure oscillations during diesel knock are commonly captured by pressure transducers, while there is a lack of direct evidence and visualization images, such that its fundamental formation mechanism is still unclear. In this study, optical experiments on diesel knock with destructive pressure oscillations were investigated in an optical rapid compression machine. High-speed direct photography and simultaneous pressure acquisition were synchronically performed, and different injection pressures and ambient pressures were considered. The results show that for the given ambient temperature and pressure, diesel knock becomes prevalent at higher injection pressures where fuel spray impingement becomes enhanced. Higher ambient pressure can reduce the tendency to diesel knock under critical conditions. For the given injection pressure satisfying knocking combustion, knock intensity is decreased as ambient pressure is increased. Further analysis of visualization images shows diesel knock is closely associated with the prolonged ignition delay time due to diesel spray impingement. High-frequency pressure oscillation is caused by the propagation of supersonic reaction-front originating from the second-stage autoignition of mixture. In addition, the oscillation frequencies are obtained through the fast Fourier transform (FFT) analysis.


Sign in / Sign up

Export Citation Format

Share Document