GEOLOGICAL MODEL EVALUATION THROUGH WELL TEST SIMULATION: A CASE STUDY FROM THE WYTCH FARM OILFIELD, SOUTHERN ENGLAND

2007 ◽  
Vol 30 (1) ◽  
pp. 41-58 ◽  
Author(s):  
S.Y. Zheng ◽  
V. M. Legrand ◽  
P.W.M. Corbett
Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 150
Author(s):  
Nilgün Güdük ◽  
Miguel de la Varga ◽  
Janne Kaukolinna ◽  
Florian Wellmann

Structural geological models are widely used to represent relevant geological interfaces and property distributions in the subsurface. Considering the inherent uncertainty of these models, the non-uniqueness of geophysical inverse problems, and the growing availability of data, there is a need for methods that integrate different types of data consistently and consider the uncertainties quantitatively. Probabilistic inference provides a suitable tool for this purpose. Using a Bayesian framework, geological modeling can be considered as an integral part of the inversion and thereby naturally constrain geophysical inversion procedures. This integration prevents geologically unrealistic results and provides the opportunity to include geological and geophysical information in the inversion. This information can be from different sources and is added to the framework through likelihood functions. We applied this methodology to the structurally complex Kevitsa deposit in Finland. We started with an interpretation-based 3D geological model and defined the uncertainties in our geological model through probability density functions. Airborne magnetic data and geological interpretations of borehole data were used to define geophysical and geological likelihoods, respectively. The geophysical data were linked to the uncertain structural parameters through the rock properties. The result of the inverse problem was an ensemble of realized models. These structural models and their uncertainties are visualized using information entropy, which allows for quantitative analysis. Our results show that with our methodology, we can use well-defined likelihood functions to add meaningful information to our initial model without requiring a computationally-heavy full grid inversion, discrepancies between model and data are spotted more easily, and the complementary strength of different types of data can be integrated into one framework.


2021 ◽  
Vol 13 (5) ◽  
pp. 873
Author(s):  
Dimitra Konsta ◽  
Alexandra Tsekeri ◽  
Stavros Solomos ◽  
Nikolaos Siomos ◽  
Anna Gialitaki ◽  
...  

We use the Generalized Retrieval of Aerosol Surface Properties algorithm (GRASP) to compare with dust concentration profiles derived from the NMME-DREAM model for a specific dust episode. The GRASP algorithm provides the possibility of deriving columnar and vertically-resolved aerosol properties from a combination of lidar and sun-photometer observations. Herein, we apply GRASP for analysis of a Saharan dust outburst observed during the “PREparatory: does dust TriboElectrification affect our ClimaTe” campaign (PreTECT) that took place at the North coast of Crete, at the Finokalia ACTRIS station. GRASP provides column-averaged and vertically resolved microphysical and optical properties of the particles. The retrieved dust concentration profiles are compared with modeled concentration profiles derived from the NMME-DREAM dust model. To strengthen the results, we use dust concentration profiles from the POlarization-LIdar PHOtometer Networking method (POLIPHON). A strong underestimation of the maximum dust concentration is observed from the NMME-DREAM model. The reported differences between the retrievals and the model indicate a high potential of the GRASP algorithm for future studies of dust model evaluation.


Author(s):  
Beniamino Di Martino ◽  
Dario Branco ◽  
Luigi Colucci Cante ◽  
Salvatore Venticinque ◽  
Reinhard Scholten ◽  
...  

AbstractThis paper proposes a semantic framework for Business Model evaluation and its application to a real case study in the context of smart energy and sustainable mobility. It presents an ontology based representation of an original business model and examples of inferential rules for knowledge extraction and automatic population of the ontology. The real case study belongs to the GreenCharge European Project, that in these last years is proposing some original business models to promote sustainable e-mobility plans. An original OWL Ontology contains all relevant Business Model concepts referring to GreenCharge’s domain, including a semantic description of TestCards, survey results and inferential rules.


2010 ◽  
Author(s):  
Rini Eka A Soegiyono ◽  
Mohamed Elsayed Ahmed Gatas Abuzeid ◽  
Mostafa M. El-Farahaty Osman ◽  
Ahmed ElSonbaty ◽  
A.M Guichard ◽  
...  

2021 ◽  
pp. 111-126
Author(s):  
A. A. Agarkova ◽  
S. E. Shebankin ◽  
M. A. Tukaev ◽  
M. S. Karmazin

The usual method for constructing a digital model of a field is based on hydrodynamic modeling using the basic implementation of a geological model, usually requires additional adjustments to the initial data, and as a result, leads to a wide range of uncertainties in assessing the predicted technological indicators of field development. The PK1 reservoir of a gas condensate field case study discuss-es the method of iterative modeling, which makes it possible to comprehensively approach the assessment of possible uncertainties.


2019 ◽  
Vol 12 (11) ◽  
pp. 4571-4584 ◽  
Author(s):  
Zhiqiang Li ◽  
Yulun Zhou ◽  
Bingcheng Wan ◽  
Hopun Chung ◽  
Bo Huang ◽  
...  

Abstract. The veracity of urban climate simulation models should be systematically evaluated to demonstrate the trustworthiness of these models against possible model uncertainties. However, existing studies paid insufficient attention to model evaluation; most studies only provided some simple comparison lines between modelled variables and their corresponding observed ones on the temporal dimension. Challenges remain since such simple comparisons cannot concretely prove that the simulation of urban climate behaviours is reliable. Studies without systematic model evaluations, being ambiguous or arbitrary to some extent, may lead to some seemingly new but scientifically misleading findings. To tackle these challenges, this article proposes a methodological framework for the model evaluation of high-resolution urban climate simulations and demonstrates its effectiveness with a case study in the area of Shenzhen and Hong Kong SAR, China. It is intended to (again) remind urban climate modellers of the necessity of conducting systematic model evaluations with urban-scale climatology modelling and reduce these ambiguous or arbitrary modelling practices.


Sign in / Sign up

Export Citation Format

Share Document