Effect of sorbic acid and dual‐purpose inoculants on the fermentation quality and aerobic stability of high dry matter rice straw silage

Author(s):  
J. Zhao ◽  
X. Tao ◽  
S. Wang ◽  
J. Li ◽  
T. Shao
Author(s):  
Ali Ameen Saeed ◽  
Saja Intisar Abid

This study was conducted in Nutrition Lab. to investigate the effect of the type and level of substitution of urea with ruminant manure, M (sheep, cow and buffalo) on basis of nitrogen (N) content on the nutritive value of rice straw silage (RSS). Accordingly silages were nominated as, S-RSS, C-RSS and B-RSS. Urea (U) was substituted with dried manure at 6 combinations, 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50 of U:M. Silage samples were prepared by treating chopped straw with pre-treated solution contained 10% low quality debis and 2% urea. Results showed that lower (P˂0.01) DM loss (11.4%) was observed in S-RSS, and with addition of urea only (3.6%).        Samples of S-RSS and C-RSS recorded higher (P˂0.01) Fleig points (Fp) as compared with those prepared by the addition of B-RSS, 60.42, 55.58 and 49.59 respectively. Reduction (P˂0.01) in this parameter was noticed in samples prepared with a combination of 100:0. Aerobic stability (AS) was a reduced (P˂0.01) in samples prepared by addition of S-RSS by 15 and 13 hours in comparison with samples of C-RSS and B-RSS respectively. Samples prepared with combination of 100:0 were prior (P˂0.01) as compared with other samples.        Results also showed an increase (P˂0.01) in in vitro digestibility of organic matter (IVOMD) in samples of S-RSS in comparison with samples prepared by addition of C-RSS and B-RSS, 49.99, 44.59 and 42.77% respectively. Samples prepared with combination of 100:0 recorded lower (P˂0.05) in vitro digestibility of dry matter (IVDMD) as compared with combinations of 70:30 and 60:40 of U: M, 40.52, 45.36 and 45.94% respectively.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francesco Ferrero ◽  
Ernesto Tabacco ◽  
Giorgio Borreani

Heterofermentative Lentilactobacillus hilgardii isolated from sugarcane silage, has recently been proposed as a silage inoculant to increase aerobic stability. Various conditions can influence the activity of LAB and their ability to alter silage quality (e.g., DM content and length of conservation). The aim of this study has been to evaluate the effect of L. hilgardii on the fermentation quality and aerobic stability of whole crop corn silage with different DM contents (from 26 to 45%), conserved for various conservation lengths (13–272 days). The silages were analyzed for their DM content, pH, fermentative profile, microbial count, and aerobic stability. L. hilgardii showed a positive effect on improving the aerobic stability of silages, due its ability to produce acetic acid, and reduced the yeast count. The acetic acid content increased as the conservation period increased and decreased as the DM content increased. The yeast count was reduced during conservation in a DM dependent manner and the inoculation with LH determined a reduction in the count of 0.48 log cfu/g. The aerobic stability increased as the conservation period increased, and the treatment with LH on average increased the aerobic stability by 19 h. The results of this experiment suggest that higher aerobic stability could be achieved in corn silages by ensiling at medium or low DM contents, or by increasing the length of conservation if a higher DM content at ensiling is needed. The inoculation with LH helps to improve the aerobic stability of corn silages by reducing the yeast count.


2021 ◽  
Vol 51 (3) ◽  
pp. 371-377
Author(s):  
M. Besharati ◽  
V. Palangi ◽  
V. Ghozalpour ◽  
Z. Nemati ◽  
T. Ayaşan

This study assessed the effects of the additions of an essential oil (EO), composed of ricinoleic acid, cardol, cardanol, and apple pomace, on fermentation quality and aerobic stability of alfalfa silages. The experimental treatments consisted of T1) alfalfa (control), T2) alfalfa with EO, T3) alfalfa (75%) with apple pomace (25%), T4) alfalfa (75%) with apple pomace (25%) and EO, T5) alfalfa (50%) with apple pomace (50%), T6) alfalfa (50%) with apple pomace (50%) and EO, T7) alfalfa (25%) with apple pomace (75%), and T8) alfalfa (25%) with apple pomace (75%) and EO. The addition of apple pomace decreased the silage pH compared with the control (P <0.01). Apple pomace at 25% level increased the total volatile fatty acid (iVFA) content (P <0.05). Essential oil (EO) decreased tVFA and increased dry matter (DM) content 90 days after ensiling (P <0.01). Apple pomace decreased ammonia (N-NH3), crude protein (CP), and crude ash (CA) content and increased the amounts of neutral detergent fibre (NDF) and acid detergent fibre (ADF) (P <0.01). Essential oil and apple pomace (level 75%) increased effective digestibility (P <0.05). Apple pomace decreased aerobic stability and the addition of EO increased aerobic stability (P <0.05). Thus, use of apple pomace as a source of fermentable carbohydrate and/or the addition of EO in the preparation of high-quality alfalfa silage is recommended to offset its high buffering capacity and low carbohydrate content.


2013 ◽  
Vol 22 (1) ◽  
pp. 115-126 ◽  
Author(s):  
Johan De Boever ◽  
Elien Dupon ◽  
Eva Wambacq ◽  
Joos Latré

 The effect of adding an inoculant containing Lactobacillus buchneri, L. plantarum and L. casei to wilted perennial ryegrass, harvested at four growth stages and ensiled for either 60 or 150 d on silage fermentation quality, chemical composition, rumen degradability of neutral detergent fibre (NDF) and organic matter (OM) and in vitro OM digestibility (OMd) was studied. Compared to the control silage, more sugars were fermented to lactic and acetic acid with the inoculant, resulting in a lower pH, less dry matter losses and protein degradation and a better aerobic stability. The effects of the additive on fermentation quality were more pronounced after 150 than after 60 d of ensiling, because the quality of the control silage was worse after long ensiling period. The treatment lowered NDF content of grass harvested at the first two growth stages by degrading cell walls to complex sugars, but had no effect on NDF degradability of the silage. The inoculant had no effect on rumen OM degradability nor on OMd after the short ensiling period, but increased the rumen OM degradability for the first two growth stages and OMd for all growth stages after long ensiling period.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 590
Author(s):  
Zhipeng Huang ◽  
Musen Wang ◽  
Wencan Ke ◽  
Xusheng Guo

The study was conducted to screen high 1,2-propanediol produced by Lactobacillus buchneri strains, isolated from baled silages stored for 1 or 2 years, and to evaluate their effects on fermentation quality and aerobic stability of whole-plant corn silage. In total, 31 L. buchneri strains were isolated from alfalfa, whole-plant corn and oat silages. Based on growth performance and 1,2-propanediol and acetic acid production, two strains, L. buchneri 9-2 and L. buchneri 10-1, from alfalfa silage, were further assessed in an ensiling trial on whole-plant corn. The corn silage inoculated with L. buchneri 9-2 or L. buchneri 10-1 had a higher concentration of 1,2-propanediol (34.7 or 34.6 g/kg dry matter (DM)) and acetic acid (47.2 or 45.9 g/kg DM) in comparison with L. buchneri 40788 (reference strain) treated silage (19.5 and 35.9 g/kg DM) after 90 d of fermentation. In addition, these two strains performed better in improving silage aerobic stability relative to control and L. buchneri 40788. The results above indicated that L. buchneri 9-2 and L. buchneri 10-1 could be candidate strains to increase 1,2-propanediol and acetic acid concentrations and improve the aerobic stability of whole-plant corn silage.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 232
Author(s):  
Antonio Gallo ◽  
Francesca Ghilardelli ◽  
Alberto Stanislao Atzori ◽  
Severino Zara ◽  
Barbara Novak ◽  
...  

Sixty-four corn silages were characterized for chemicals, bacterial community, and concentrations of several fungal metabolites. Silages were grouped in five clusters, based on detected mycotoxins, and they were characterized for being contaminated by (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. Altersetin was detected in clusters 1, 3, and 5. Rugulusovin or brevianamide F were detected in several samples, with the highest concentration in cluster 3. Emodin was detected in more than 50.0% of samples of clusters 1, 3 and 5, respectively. Kojic acid occurred mainly in clusters 1 and 2 at very low concentrations. Regarding Fusarium mycotoxins, high occurrences were observed for FB3, FB4, FA1, whereas the average concentrations of FB6 and FA2 were lower than 12.4 µg/kg dry matter. Emerging Fusarium-produced mycotoxins, such as siccanol, moniliformin, equisetin, epiequisetin and bikaverin were detected in the majority of analyzed corn silages. Pestalotin, oxaline, phenopirrozin and questiomycin A were detected at high incidences. Concluding, this work highlighted that corn silages could be contaminated by a high number of regulated and emerging mycotoxins.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 879
Author(s):  
Seong-Shin Lee ◽  
Jeong-Seok Choi ◽  
Dimas Hand Vidya Paradhipta ◽  
Young-Ho Joo ◽  
Hyuk-Jun Lee ◽  
...  

This research was conducted to determine the effects of selected inoculant on the silage with different wilting times. The ryes were unwilted or wilted for 12 h. Each rye forage was ensiled for 100 d in quadruplicate with commercial inoculant (Lactobacillus plantarum sp.; LPT) or selected inoculant (Lactobacillus brevis 100D8 and Leuconostoc holzapfelii 5H4 at 1:1 ratio; MIX). In vitro dry matter digestibility and in vitro neutral detergent fiber digestibility were highest in the unwilted MIX silages (p < 0.05), and the concentration of ruminal acetate was increased in MIX silages (p < 0.001; 61.4% vs. 60.3%) by the increase of neutral detergent fiber digestibility. The concentration of ruminal ammonia-N was increased in wilted silages (p < 0.001; 34.8% vs. 21.1%). The yeast count was lower in the MIX silages than in the LPT silages (p < 0.05) due to a higher concentration of acetate in MIX silages (p < 0.05). Aerobic stability was highest in the wilted MIX silages (p < 0.05). In conclusion, the MIX inoculation increased aerobic stability and improved fiber digestibility. As a result of the wilting process, ammonia-N in silage decreased but ruminal ammonia-N increased. Notably, the wilted silage with applied mixed inoculant had the highest aerobic stability.


Sign in / Sign up

Export Citation Format

Share Document