Etiology and management of Alzheimer’s disease: Potential role of gut microbiota modulation with probiotics supplementation

Author(s):  
Vaishali Lekchand Dasriya ◽  
Mrinal Samtiya ◽  
Tejpal Dhewa ◽  
Monica Puniya ◽  
Sanjeev Kumar ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1370
Author(s):  
Umair Shabbir ◽  
Akanksha Tyagi ◽  
Fazle Elahi ◽  
Simon Okomo Aloo ◽  
Deog-Hwan Oh

Gut microbiota (GM) play a role in the metabolic health, gut eubiosis, nutrition, and physiology of humans. They are also involved in the regulation of inflammation, oxidative stress, immune responses, central and peripheral neurotransmission. Aging and unhealthy dietary patterns, along with oxidative and inflammatory responses due to gut dysbiosis, can lead to the pathogenesis of neurodegenerative diseases, especially Alzheimer’s disease (AD). Although the exact mechanism between AD and GM dysbiosis is still unknown, recent studies claim that secretions from the gut can enhance hallmarks of AD by disturbing the intestinal permeability and blood–brain barrier via the microbiota–gut–brain axis. Dietary polyphenols are the secondary metabolites of plants that possess anti-oxidative and anti-inflammatory properties and can ameliorate gut dysbiosis by enhancing the abundance of beneficial bacteria. Thus, modulation of gut by polyphenols can prevent and treat AD and other neurodegenerative diseases. This review summarizes the role of oxidative stress, inflammation, and GM in AD. Further, it provides an overview on the ability of polyphenols to modulate gut dysbiosis, oxidative stress, and inflammation against AD.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


2021 ◽  
Vol 10 (19) ◽  
pp. 4360
Author(s):  
Iska Avitan ◽  
Yudit Halperin ◽  
Trishna Saha ◽  
Naamah Bloch ◽  
Dana Atrahimovich ◽  
...  

Alzheimer’s disease (AD) is often comorbid with other pathologies. First, we review shortly the diseases most associated with AD in the clinic. Then we query PubMed citations for the co-occurrence of AD with other diseases, using a list of 400 common pathologies. Significantly, AD is found to be associated with schizophrenia and psychosis, sleep insomnia and apnea, type 2 diabetes, atherosclerosis, hypertension, cardiovascular diseases, obesity, fibrillation, osteoporosis, arthritis, glaucoma, metabolic syndrome, pain, herpes, HIV, alcoholism, heart failure, migraine, pneumonia, dyslipidemia, COPD and asthma, hearing loss, and tobacco smoking. Trivially, AD is also found to be associated with several neurodegenerative diseases, which are disregarded. Notably, our predicted results are consistent with the previously published clinical data and correlate nicely with individual publications. Our results emphasize risk factors and promulgate diseases often associated with AD. Interestingly, the comorbid diseases are often degenerative diseases exacerbated by reactive oxygen species, thus underlining the potential role of antioxidants in the treatment of AD and comorbid diseases.


2020 ◽  
Vol 11 ◽  
Author(s):  
Chiaki Yamada ◽  
Juliet Akkaoui ◽  
Anny Ho ◽  
Carolina Duarte ◽  
Richard Deth ◽  
...  

BackgroundAmong different types of sphingolipids produced by human cells, the possible engagement of ceramide species in the pathogenesis of Alzheimer’s disease (AD) has attracted recent attention. While ceramides are primarily generated by de novo synthesis in mammalian cells, only a limited number of bacterial species, produce ceramides, including phosphoglycerol dihydroceramide (PGDHC) that is produced by the key periodontal pathogen Porphyromonas gingivalis. Emerging evidence indicates that virulence factors produced by P. gingivalis, such as lipopolysaccharide and gingipain, may be engaged in the initiation and/or progression of AD. However, the potential role of PGDHC in the pathogenesis of AD remains unknown. Therefore, the aim of this study was to evaluate the influence of PGDHC on hallmark findings in AD.Material and MethodsCHO-7WD10 and SH-SY-5Y cells were exposed to PGDHC and lipopolysaccharide (LPS) isolated from P. gingivalis. Soluble Aβ42 peptide, amyloid precursor protein (APP), phosphorylated tau and senescence-associated secretory phenotype (SASP) factors were quantified using ELISA and Western blot assays. ResultsOur results indicate that P. gingivalis (Pg)-derived PGDHC, but not Pg-LPS, upregulated secretion of soluble Aβ42 peptide and expression of APP in CHO-7WD10 cells. Furthermore, hyperphosphorylation of tau protein was observed in SH-SY-5Y cells in response to PGDHC lipid. In contrast, Pg-LPS had little, or no significant effect on the tau phosphorylation induced in SH-SY-5Y cells. However, both PGDHC and Pg-LPS contributed to the senescence of SH-SY5Y cells as indicated by the production of senescence-associated secretory phenotype (SASP) markers, including beta-galactosidase, cathepsin B (CtsB), and pro-inflammatory cytokines TNF-α, and IL-6. Additionally, PGDHC diminished expression of the senescence-protection marker sirtuin-1 in SH-SY-5Y cells.ConclusionsAltogether, our results indicate that P. gingivalis-derived PGDHC ceramide promotes amyloidogenesis and hyperphosphorylation, as well as the production of SASP factors. Thus, PGDHC may represent a novel class of bacterial-derived virulence factors for AD associated with periodontitis.


2012 ◽  
Vol 9 (5) ◽  
pp. 563-573 ◽  
Author(s):  
Kelly M. Bakulski ◽  
Laura S. Rozek ◽  
Dana C. Dolinoy ◽  
Henry L. Paulson ◽  
Howard Hu

Sign in / Sign up

Export Citation Format

Share Document