Microwave‐assisted forced convection drying effect on bioactive compounds of the Canadian blueberry leaves ( Vaccinium corymbosum )

Author(s):  
Victor Hugo Borda‐Yepes ◽  
Farid Chejne ◽  
David Alejandro Granados ◽  
Esteban Largo ◽  
Benjamin Rojano ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
pp. 430
Author(s):  
Hassan Hadi Mehdi Al Rubaiy ◽  
Ammar Altemimi ◽  
Ali Khudair Jaber Al Rikabi ◽  
Naoufal Lakhssassi ◽  
Anubhav Pratap-Singh

The present study proposes microwave-assisted extraction as a sustainable technique for the biosynthesis of bioactive compounds from rice fermented with Aspergillus flavus (koji). First, fermentation conditions (i.e., pH from 3–12, five temperatures from 20–40 °C, and four culture-fermentation media viz. wheat, wheat bran, malt and rice) were optimized for producing microbial bioactive compounds. Microwave extraction was performed at 2450 MHz and 500 W for 20, 30, and 40 s with seven solvents (distilled water, ethyl acetate, hexane, ethanol, chloroform, diethyl ether, and methanol). The obtained results revealed that ethyl acetate is the most appropriate solvent for extraction. Effects of this ethyl acetate extract were compared with a commercial synthetic antioxidant. Antioxidant properties were enhanced by preventing the oxidation of the linoleic acid (C18H32O2) with an inhibition rate (antioxidant efficacy) of 73.13%. Notably, the ferrous ion binding ability was marginally lower when compared to the disodium salt of ethylenediaminetetraacetic acid (EDTA). Additionally, the obtained total content of phenolic compounds in the ethyl acetate extract of fermented rice (koji) by Aspergillus flavus was 232.11 mg based on gallic acid/mL. Antioxidant compounds in the ethyl acetate extract of fermented rice showed stability under neutral conditions, as well as at high temperatures reaching 185 °C during 2 h, but were unstable under acidic and alkaline conditions. The results demonstrate the efficacy of novel microwave-assisted extraction technique for accelerating antioxidant production during rice fermentation.


2020 ◽  
Vol 16 (1-2) ◽  
Author(s):  
Cassiano Brown da Rocha ◽  
Caciano Pelayo Zapata Noreña

AbstractThe grape pomace is a by-product from the industrial processing of grape juice, which can be used as a source of bioactive compounds. The aim of this study was to separate the phenolic compounds from grape pomace using an acidic aqueous solution with 2 % citric acid as a solvent, using both ultrasound-assisted extraction, with powers of 250, 350 and 450 W and times of 5, 10 and 15 min, and microwave-assisted extraction using powers of 600, 800 and 1,000 W and times of 5, 7 and 10 min. The results showed that for both methods of extraction, the contents of total phenolic compounds and antioxidant activity by ABTS and DPPH increased with time, and microwave at 1,000 W for 10 min corresponded to the best extraction condition. However, the contents of phenolic compounds and antioxidant activity were lower than exhaustive extraction using acidified methanol solution.


2016 ◽  
Vol 70 (6) ◽  
Author(s):  
Van T. Nguyen ◽  
Michael C. Bowyer ◽  
Ian A. van Altena ◽  
Christopher J. Scarlett

Abstractis known as a healing herb which has traditionally been used in the treatment of various diseases such as hepatitis, diabetes and cancer. The extraction parameters have great effects on the extraction efficiency of bioactive compounds and pharmacological activity of the extracts. This study sought to optimise the microwave-assisted extraction parameters for phenolic compounds-enriched extracts and antioxidant capacity from


2019 ◽  
Vol 129 ◽  
pp. 395-404 ◽  
Author(s):  
Nacim Nabet ◽  
Bienvenida Gilbert-López ◽  
Khodir Madani ◽  
Miguel Herrero ◽  
Elena Ibáñez ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 796
Author(s):  
Noormazlinah Noormazlinah ◽  
Norlaili Hashim ◽  
Abdurahman Hamid Nour ◽  
Mimi Sakinah Abdul Munaim ◽  
Maria Pilar Almajano ◽  
...  

The traditional ways in the extraction of bioactive compounds using conventional methods are disadvantageous from both economic and environmental perspectives. In this, the potential of microwave-assisted hydrodistillation conditions for extraction of phytosterol from legume pods was investigated. Salkowski test performed on the legume pod has shown the reddish brown in all sample which confirmed the presence of phytosterol qualitatively. Liebermann-Burchard procedure and ultraviolet-visible spectroscopy (UV-Vis) apparatus were used to study the concentration of phytosterol at different extraction parameters which are temperature (25–80 °C), solvent concentration (50–100% v/v), irradiation time (1–10 min) and microwave power (400–800 W). The optimal conditions for highest yield of extract (0.219 mg/L) were obtained at a microwave power of 600 W, the irradiation time of 6 min, and ethanol concentration of 75% v/v. Results obtained in this study have shown the capability of microwave-assisted hydrodistillation in the extraction of phytosterol from legume pod. Further works are nevertheless required to provide a deeper understanding of the mechanisms involved to facilitate the development of an optimum system applicable to the industry.


Weed Science ◽  
1986 ◽  
Vol 34 (6) ◽  
pp. 824-829 ◽  
Author(s):  
Jerry J. Baron ◽  
Thomas J. Monaco

Hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione] toxicity, absorption, translocation, metabolism, and effect on photosynthesis were investigated with rooted cuttings of highbush blueberry (Vaccinium corymbosumL.), rabbiteye blueberry (V. asheiReade), and hollow goldenrod (Solidago fistulosaMiller # SOOFI). Highbush and rabbiteye blueberry plants were three times more tolerant to root applications of hexazinone than hollow goldenrod. Blueberry plants absorbed an average of 7.9% of root-applied14C-hexazinone and hollow goldenrod absorbed an average of 10.1%. An average of 6.8% of root-absorbed hexazinone (14C-label) was translocated from the roots of blueberry to stem and leaves. Radioactivity in hollow goldenrod was distributed equally between roots and shoots. The majority of radioactivity in both species was recovered as hexazinone. Root-absorbed hexazinone caused a rapid inhibition of photosynthesis in intact hollow goldenrod leaves. Root-absorbed hexazinone was capable of inhibiting photosynthesis in intact blueberry leaves; however, this occurred only when roots were exposed to high concentrations of hexazinone.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3618 ◽  
Author(s):  
Bruno Melgar ◽  
Maria Inês Dias ◽  
Lillian Barros ◽  
Isabel C.F.R. Ferreira ◽  
Antonio D. Rodriguez-Lopez ◽  
...  

Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) of bioactive compounds, peels from Opuntia engelmannii cultivar (cv.) Valencia were optimized by response surface methodology. Randomized extraction runs were performed for each of the technologies employed in order to build effective models with maximum (bioactive molecules content and yield) and minimum (antioxidant activity) responses. A 5-level, 4-factor central composite design was used to obtain target responses as a function of extraction time (t), solid to liquid ratio (S/L), methanol concentration (metOH), and temperature (T). Specific response optimization for each technology was analyzed, discussed, and general optimization from all the responses together was also gather. The optimum values for each factor were: t = 2.5 and 1.4 min, S/L = 5 and 5 g/L, metOH = 34.6 and 0% of methanol and T = 30 and 36.6 °C, achieving maximum responses of 201.6 and 132.9 mg of betalains/g, 13.9 and 8.0 mg of phenolic acids/g, 2.4 and 1.5 mg of flavonoids/g, 71.8% and 79.1% of extractable solid and IC50 values for the antioxidant activity of 2.9 and 3.6, for UAE and MAE, respectively. The present study suggested UAE as the best extraction system, in order to maximize recovery of bioactive compounds with a high antioxidant activity.


Sign in / Sign up

Export Citation Format

Share Document