Biodegradable packaging as a suitable protectant for the conservation of frozen pacu ( Piaractus mesopotamicus ) for 360 days of storage at ‐18ºC

Author(s):  
Milene de Andrade Vogt Cossa ◽  
Ana Paula Bilck ◽  
Fabio Yamashita ◽  
Marina Leite Mitterer‐Daltoé
2017 ◽  
Vol 62 (2) ◽  
pp. 19-28
Author(s):  
Onuc Cozar ◽  
◽  
Nicolae Cioica ◽  
Elena Mihaela Nagy ◽  
Constantin Coţa ◽  
...  

Author(s):  
Iuri Moraes Neyrão ◽  
Jaqueline Dalbello Biller ◽  
Leonardo Susumu Takahashi ◽  
Elisabeth Criscuolo Urbinati

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 767
Author(s):  
Elsa Díaz-Montes ◽  
Roberto Castro-Muñoz

Some of the current challenges faced by the food industry deal with the natural ripening process and the short shelf-life of fresh and minimally processed products. The loss of vitamins and minerals, lipid oxidation, enzymatic browning, and growth of microorganisms have been the main issues for many years within the innovation and improvement of food packaging, which seeks to preserve and protect the product until its consumption. Most of the conventional packaging are petroleum-derived plastics, which after product consumption becomes a major concern due to environmental damage provoked by their difficult degradation. In this sense, many researchers have shown interest in edible films and coatings, which represent an environmentally friendly alternative for food packaging. To date, chitosan (CS) is among the most common materials in the formulation of these biodegradable packaging together with polysaccharides, proteins, and lipids. The good film-forming and biological properties (i.e., antimicrobial, antifungal, and antiviral) of CS have fostered its usage in food packaging. Therefore, the goal of this paper is to collect and discuss the latest development works (over the last five years) aimed at using CS in the manufacture of edible films and coatings for food preservation. Particular attention has been devoted to relevant findings in the field, together with the novel preparation protocols of such biodegradable packaging. Finally, recent trends in new concepts of composite films and coatings are also addressed.


2019 ◽  
Vol 26 (2) ◽  
pp. 536-544
Author(s):  
Carla Bacchetta ◽  
Andrea S. Rossi ◽  
Raúl E. Cian ◽  
David R. Hernández ◽  
Sebastián Sánchez ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2588
Author(s):  
Mansuri M. Tosif ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Grażyna Zawiślak ◽  
Grzegorz Maj ◽  
...  

In recent years, scientists have focused on research to replace petroleum-based components plastics, in an eco-friendly and cost-effective manner, with plant-derived biopolymers offering suitable mechanical properties. Moreover, due to high environmental pollution, global warming, and the foreseen shortage of oil supplies, the quest for the formulation of biobased, non-toxic, biocompatible, and biodegradable polymer films is still emerging. Several biopolymers from varied natural resources such as starch, cellulose, gums, agar, milk, cereal, and legume proteins have been used as eco-friendly packaging materials for the substitute of non-biodegradable petroleum-based plastic-based packaging materials. Among all biopolymers, starch is an edible carbohydrate complex, composed of a linear polymer, amylose, and amylopectin. They have usually been considered as a favorite choice of material for food packaging applications due to their excellent forming ability, low cost, and environmental compatibility. Although the film prepared from bio-polymer materials improves the shelf life of commodities by protecting them against interior and exterior factors, suitable barrier properties are impossible to attain with single polymeric packaging material. Therefore, the properties of edible films can be modified based on the hydrophobic–hydrophilic qualities of biomolecules. Certain chemical modifications of starch have been performed; however, the chemical residues may impart toxicity in the food commodity. Therefore, in such cases, several plant-derived polymeric combinations could be used as an effective binary blend of the polymer to improve the mechanical and barrier properties of packaging film. Recently, scientists have shown their great interest in underutilized plant-derived mucilage to synthesize biodegradable packaging material with desirable properties. Mucilage has a great potential to produce a stable polymeric network that confines starch granules that delay the release of amylose, improving the mechanical property of films. Therefore, the proposed review article is emphasized on the utilization of a blend of source and plant-derived mucilage for the synthesis of biodegradable packaging film. Herein, the synthesis process, characterization, mechanical properties, functional properties, and application of starch and mucilage-based film are discussed in detail.


Aquaculture ◽  
2021 ◽  
Vol 535 ◽  
pp. 736381
Author(s):  
Geovanna Carla Zacheo Coelho ◽  
Dilberto Ribeiro Arashiro ◽  
Tamiris Disselli ◽  
Matheus Pereira-Santos ◽  
Tatiana María Mira-López ◽  
...  

Biotemas ◽  
2013 ◽  
Vol 26 (4) ◽  
Author(s):  
Wilson Gomez Manrique ◽  
Mayra Araguaia Pereira Figueiredo ◽  
Gustavo Da Silva Claudiano ◽  
Maurício Laterça Martins ◽  
Flávio Ruas Moraes

Sign in / Sign up

Export Citation Format

Share Document