scholarly journals The role of TROP2 in trophoblast invasion and placental development

2017 ◽  
Vol 53 ◽  
pp. 109-109
2010 ◽  
Vol 185 (7) ◽  
pp. 4420-4429 ◽  
Author(s):  
Chiara Agostinis ◽  
Roberta Bulla ◽  
Claudio Tripodo ◽  
Angela Gismondi ◽  
Helena Stabile ◽  
...  

2010 ◽  
Vol 207 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Delphine Benaitreau ◽  
Esther Dos Santos ◽  
Marie-Christine Leneveu ◽  
Nadia Alfaidy ◽  
Jean-Jacques Feige ◽  
...  

Adiponectin is an adipokine with insulin-sensitizing, anti-inflammatory, anti-atherogenic, and anti-proliferative effects. The expression of specific adiponectin receptors in the placenta and in the endometrium suggests a role for this cytokine in placental development, but this role has not yet been elucidated. The invasion of trophoblast cells during the first trimester of pregnancy being crucial to placentation process, we have studied adiponectin effects on human trophoblast invasive capacities. We found that adiponectin stimulated human trophoblast cell migration in HTR-8/SVneo cells in a dose-independent manner. In addition, adiponectin also significantly enhanced invasion of HTR-8/SVneo cells and of human extravillous trophoblast from first trimester placenta. These pro-invasive effects of adiponectin in human trophoblasts seem to be mediated in part via increased matrix metalloproteinases (MMP2 and MMP9) activities and via repression of TIMP2 mRNA expression. Our results suggest that adiponectin could be a positive regulator of the early invasion process by modulating the MMP/TIMP balance. Moreover, these results provide an insight into the role of adiponectin in pathological conditions characterized by insufficient or excessive trophoblast invasion.


Reproduction ◽  
2019 ◽  
Vol 158 (5) ◽  
pp. R189-R196 ◽  
Author(s):  
Changwon Yang ◽  
Gwonhwa Song ◽  
Whasun Lim

In humans, pregnancy maintenance depends on normal placental formation following trophoblast invasion into the endometrium and vascular remodeling. In the early stages of pregnancy, immune tolerance, inflammatory response and adaptation to hypoxia need to be precisely regulated in the placental microenvironment. Various types of cells, such as trophoblasts, endothelial cells, immune cells, mesenchymal stem cells (MSCs) and adipocytes, induce normal placental development via intercellular interactions through soluble factors. Extracellular vesicles (EVs) are used to diagnose various diseases because their constituents vary depending on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and the invasion of trophoblasts through intercellular delivery in the placental microenvironment. If the placenta does not adapt to the changed environment during early pregnancy, pregnancy disorders such as pre-eclampsia, preterm birth and gestational diabetes mellitus can occur. Thus, the important roles of EVs during pregnancy and development is fast emerging. This review describes the physiological role of EVs during placentation and their composition in the human placenta. It also suggests the possibility of finding EV markers that can diagnose pregnancy disorders. Furthermore, it describes the properties of EVs that affect pregnancy in livestock.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1877
Author(s):  
Gilles Lalmanach ◽  
Mariana Kasabova-Arjomand ◽  
Fabien Lecaille ◽  
Ahlame Saidi

Alongside its contribution in maintaining skin homeostasis and its probable involvement in fetal and placental development, cystatin M/E (also known as cystatin 6) was first described as a tumor suppressor of breast cancer. This review aims to provide an update on cystatin M/E with particular attention paid to its role during tumorigenesis. Cystatin M/E, which is related to type 2 cystatins, displays the unique property of being a dual tight-binding inhibitor of both legumain (also known as asparagine endopeptidase) and cysteine cathepsins L, V and B, while its expression level is epigenetically regulated via the methylation of the CST6 promoter region. The tumor-suppressing role of cystatin M/E was further reported in melanoma, cervical, brain, prostate, gastric and renal cancers, and cystatin M/E was proposed as a biomarker of prognostic significance. Contrariwise, cystatin M/E could have an antagonistic function, acting as a tumor promoter (e.g., oral, pancreatic cancer, thyroid and hepatocellular carcinoma). Taking into account these apparently divergent functions, there is an urgent need to decipher the molecular and cellular regulatory mechanisms of the expression and activity of cystatin M/E associated with the safeguarding homeostasis of the proteolytic balance as well as its imbalance in cancer.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 644
Author(s):  
Agata M. Parsons ◽  
Gerrit J. Bouma

Successful pregnancy requires the establishment of a highly regulated maternal–fetal environment. This is achieved through the harmonious regulation of steroid hormones, which modulate both maternal and fetal physiology, and are critical for pregnancy maintenance. Defects in steroidogenesis and steroid signaling can lead to pregnancy disorders or even fetal loss. The placenta is a multifunctional, transitory organ which develops at the maternal–fetal interface, and supports fetal development through endocrine signaling, the transport of nutrients and gas exchange. The placenta has the ability to adapt to adverse environments, including hormonal variations, trying to support fetal development. However, if placental function is impaired, or its capacity to adapt is exceeded, fetal development will be compromised. The goal of this review is to explore the relevance of androgens and androgen signaling during pregnancy, specifically in placental development and function. Often considered a mere precursor to placental estrogen synthesis, the placenta in fact secretes androgens throughout pregnancy, and not only contains the androgen steroid nuclear receptor, but also non-genomic membrane receptors for androgens, suggesting a role of androgen signaling in placental function. Moreover, a number of pregnancy disorders, including pre-eclampsia, gestational diabetes, intrauterine growth restriction, and polycystic ovarian syndrome, are associated with abnormal androgen levels and androgen signaling. Understanding the role of androgens in the placenta will provide a greater understanding of the pathophysiology of pregnancy disorders associated with androgen elevation and its consequences.


Endocrinology ◽  
2019 ◽  
Vol 161 (1) ◽  
Author(s):  
Arin K Oestreich ◽  
Sangappa B Chadchan ◽  
Pooja Popli ◽  
Alexandra Medvedeva ◽  
Marina N Rowen ◽  
...  

Abstract Uterine receptivity is critical for establishing and maintaining pregnancy. For the endometrium to become receptive, stromal cells must differentiate into decidual cells capable of secreting factors necessary for embryo survival and placental development. Although there are multiple reports of autophagy induction correlated with endometrial stromal cell (ESC) decidualization, the role of autophagy in decidualization has remained elusive. To determine the role of autophagy in decidualization, we utilized 2 genetic models carrying mutations to the autophagy gene Atg16L1. Although the hypomorphic Atg16L1 mouse was fertile and displayed proper decidualization, conditional knockout in the reproductive tract of female mice reduced fertility by decreasing the implantation rate. In the absence of Atg16L1, ESCs failed to properly decidualize and fewer blastocysts were able to implant. Additionally, small interfering RNA knock down of Atg16L1 was detrimental to the decidualization response of human ESCs. We conclude that Atg16L1 is necessary for decidualization, implantation, and overall fertility in mice. Furthermore, considering its requirement for human endometrial decidualization, these data suggest Atg16L1 may be a potential mediator of implantation success in women.


2020 ◽  
Vol 8 (B) ◽  
pp. 210-215
Author(s):  
Makbruri Makbruri ◽  
Isabella Kurnia Liem ◽  
Ahmad Aulia Jusuf ◽  
Tantri Hellyanti

BACKGROUND: Preeclampsia is a systemic syndrome occurring in 3–5% of pregnancies, caused by disorders of cellular factors resulting in the disruption of trophoblast differentiation and invasion which is important for the placental development and maintaining pregnancy. Cullin-1 is a protein that plays a role in the process of maintaining pregnancy, development, and trophoblast invasion in the placenta. Until now, there have been no studies linking the expression of cullin-1 in preeclamptic patients with the timing of pregnancy termination. AIM: This study analyzed cullin-1 expression in preeclamptic patients and their relationship to the timing of pregnancy termination was carried out. METHODS: Placental samples were taken from preeclampsia patients consisting of three gestational age groups, then immunohistochemical staining was performed to see the dynamics of expression and distribution in each age group of pregnancy and to find out their relationship with the timing of pregnancy termination. RESULTS: Cullin-1 was expressed in syncytiotrophoblasts and cytotrophoblasts. The lowest cullin-1 level was obtained in the very preterm age group, and the highest was found in the moderate preterm gestational age group. There was a significant difference between cullin-1 optical density (OD) expression and termination time of pregnancy, and there was a significant difference (OD) in cullin-1 preeclamptic patients with very preterm gestational age with moderate preterm gestational age. CONCLUSION: Cullin-1 was expressed both in syncytiotrophoblasts and cytotrophoblasts and was associated with the timing of pregnancy termination.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Jennifer A Courtney ◽  
Helen N Jones

Introduction: Congenital heart defects affect approximately 1% of live births, often requiring complex surgeries at birth. The most significant risk factor for surgery survival is birthweight. Proper placental development and function is vital for normal fetal growth. We have previously demonstrated abnormal placental development and vascularization in human CHD placentas. Hand1 has roles in heart and placental development and has been implicated in multiple types of CHD including double right outlet, hypoplastic left heart syndrome, and septal defects. We utilized the Hand1 A126fs/+ mouse to investigate the role of Hand1 in placentation and vascularization. Methods: Hand1 A126fs/+ female mice were time-mated with Nkx2.5cre or Cdh5cre males. Feto-placental units were harvested at E10.5 and E12.5 for histological analysis, vascular assessment by IHC for CD-31, and RNA expression by qPCR. Results: Nkx2.5cre/Hand1 a126fs/+ fetuses demonstrated embryonic lethality by E10.5 due to lack of placental labyrinth formation and vascularization (Figure 1). In contrast, ablation of Hand1 in vascular endothelium (Cdh5cre) did not disrupt placental labyrinth or heart at E12.5. Expression of VegFb, Ang1, Ang2, Flt1, Flk was reduced in Hand1 A126fs/+ ; Nkx2.5cre placentas compared to control littermates, but VegFa expression was increased. Conclusion: Our data demonstrate that Hand1 expression in placental trophoblast, but not endothelium, is necessary for vascularization of the labyrinth and may disrupt multiple angiogenic factors known to be expressed in trophoblast. Alterations in Hand1 may represent a mechanism for abnormal placentation in cases of CHD. Figure 1. H/E (A-C) and CD31 (D-F) images of Hand1 +/+ (A, D), Hand1 A126fs/+ ; Nkx2.5cre (B, E), and Hand1 A126fs/+ ; Cdh5cre (C, F) placentas at day E12.5. Hand1A 126fs/+ ; Nkx2.5cre placentas fail to form labyrinth and fetal vasculature, while Hand1 A126fs/+ ; Cdh5cre placentas develop normally at this timepoint.


Endocrinology ◽  
2019 ◽  
Vol 160 (3) ◽  
pp. 684-698 ◽  
Author(s):  
Pascale Gerbaud ◽  
Padma Murthi ◽  
Jean Guibourdenche ◽  
Fabien Guimiot ◽  
Benoît Sarazin ◽  
...  

Abstract Placental development is particularly altered in trisomy of chromosome 21 (T21)–affected pregnancies. We previously described in T21-affected placentae an abnormal paracrine crosstalk between the villus mesenchymal core and villus trophoblasts. T21-affected placentae are known to be characterized by their hypovascularity. However, the causes of this anomaly remain not fully elucidated. Therefore, the hypothesis of an abnormal paracrine crosstalk between fetal mesenchymal core and placental endothelial cells (PLECs) was evocated. Villus mesenchymal cells from control (CMCs) and T21 placentae (T21MCs) were isolated and grown in culture to allow their characterization and collection of conditioned media for functional analyses (CMC-CM and T21MC-CM, respectively). Interestingly, PLEC proliferation and branching ability were less stimulated by T21MC-CM than by CMC-CM. Protein array analysis identified secreted proangiogenic growth factors in CMC-CM, which were reduced in T21MC-CM. Combined mass spectrometry and biochemical analysis identified spondin-2 as a factor decreased in T21MC-CM compared with CMC-CM. We found that exogenous spondin-2 stimulated PLEC proliferation and established that T21MC-CM supplemented with spondin-2 recovered conditioned media ability to induce PLEC proliferation and angiogenesis. Hence, this study demonstrates a crosstalk between villus mesenchymal and fetal endothelial cells, in which spondin-2 secreted from mesenchymal cells plays a central role in placental vascular functions. Furthermore, our results also suggest that a reduction in spondin-2 secretion may contribute to the pathogenesis of T21 placental hypovascularity.


Sign in / Sign up

Export Citation Format

Share Document