scholarly journals Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompatibility complex-like glycoprotein CD1b on dendritic cells

2016 ◽  
Vol 52 (1) ◽  
pp. 135-146 ◽  
Author(s):  
C. Shin ◽  
M. Kim ◽  
J.-A. Han ◽  
B. Choi ◽  
D. Hwang ◽  
...  
1992 ◽  
Vol 175 (6) ◽  
pp. 1707-1715 ◽  
Author(s):  
E Barzaga-Gilbert ◽  
D Grass ◽  
S K Lawrance ◽  
P A Peterson ◽  
E Lacy ◽  
...  

Murine T cell responses to human class II major histocompatibility complex (MHC) molecules were shown to be a minimum of 20-70-fold lower than responses to allogeneic molecules. Transgenic mice expressing slightly below normal (75-95%) or very high (250-380%) cell surface levels of human CD4 were utilized to determine whether this was due to a species-specific interaction between murine CD4 and class II molecules. Human CD4 was shown to function in signal transduction events in murine T cells based on the ability of anti-human CD4 antibody to synergize with suboptimal doses of anti-murine CD3 antibody in stimulating T cell proliferation. In mice expressing lower levels of human CD4, T cell responses to human class II molecules were enhanced up to threefold, whereas allogeneic responses were unaltered. In mice expressing high levels of human CD4, responses to human class II molecules were enhanced at least 10-fold, whereas allogeneic responses were between one and three times the level of normal responses. The relatively greater enhancement of the response to human class II molecules in both lines argues for a preferential interaction between human CD4 and human class II molecules. In mice expressing lower levels of human CD4, responses to human class II molecules were blocked by antibodies to CD4 of either species, indicating participation by both molecules. In mice expressing high levels of human CD4, responses to both human and murine class II molecules were almost completely blocked with anti-human CD4 antibody, whereas anti-murine CD4 antibody had no effect. However, anti-murine CD4 continued to synergize with anti-CD3 in stimulating T cell proliferation in these mice. Thus, overexpression of human CD4 selectively impaired the ability of murine CD4 to assist in the process of antigen recognition. The ability of human CD4 to support a strong allogeneic response under these conditions indicates that this molecule can interact with murine class II molecules to a significant extent. Despite the fact that human CD4 appeared to be the only functional coreceptor in these mice, responses to human class II molecules were still much lower than those to murine class II alloantigens. This indicates that species-specific interactions between class II molecules and CD4 expressed on peripheral T cells are not sufficient to account for the low xenogeneic response and that intrinsic differences in T cell receptor structures or the need for species specificity in the interaction between CD4 and class II molecules during positive selection are also important.


2006 ◽  
Vol 75 (2) ◽  
pp. 915-923 ◽  
Author(s):  
S. Culshaw ◽  
K. LaRosa ◽  
H. Tolani ◽  
X. Han ◽  
J. W. Eastcott ◽  
...  

ABSTRACT Mutans streptococcal glucosyltransferases (GTF) have been demonstrated to be effective components of dental caries vaccines. We had previously selected peptide subunits of GTF for vaccine development based on putative functional significance and conservation of GTF primary structure among enzyme isoforms. In this study, 20 20-mer linear GTF peptides were synthesized, 17 identified on the basis of the highest potential major histocompatibility complex (MHC) class II-binding activity using computer-generated algorithms (Epimatrix and ProPred) and 3 with previously demonstrated functional significance. The immunoreactivities of these peptides were explored with rodent systems. Sera from GTF-immunized rats, assessed for binding to linear peptides by enzyme-linked immunosorbent assay, demonstrated immunoglobulin G antibody reactivity with peptides 6 and 11 and a T-cell proliferation response to peptides 6, 9, 11, and 16. Multiple antigenic peptide (MAP) constructs were synthesized from promising linear sequences. Rats that were immunized with MAP 7, 11, or 16, respectively, responded well to the immunizing MAP. Most importantly, a robust immune response (antibody and T-cell proliferation) was observed to native GTF following MAP 11 (amino acids 847 to 866; VVINNDKFVSWGITDFEM) immunization. This response inhibited GTF enzyme function. Two dental caries pathogenesis experiments were performed wherein rats were immunized with MAP constructs 11, 16, and/or 11 plus 16, followed by infection with cariogenic Streptococcus sobrinus. In both experiments cariogenic bacterial recoveries were reduced relative to total streptococci in the MAP 11- and MAP 11 plus 16-immunized groups, and the extent of dental caries was also significantly reduced in these groups. Thus, we have identified a peptide with projected avid MHC-binding activity that elicited immunoreactivity with native GTF and demonstrated protection against dental caries infection after immunization, implying that this peptide may be important in a subunit dental caries vaccine.


2004 ◽  
Vol 200 (8) ◽  
pp. 1083-1089 ◽  
Author(s):  
Ou Li ◽  
Pan Zheng ◽  
Yang Liu

It is well established that T lymphocytes undergo homeostatic proliferation in lymphopenic environment. The homeostatic proliferation requires recognition of the major histocompatibility complex on the host. Recent studies have demonstrated that costimulation-mediated CD28, 4-1BB, and CD40 is not required for T cell homeostatic proliferation. It has been suggested that homeostatic proliferation is costimulation independent. Here, we report that T cells from mice with a targeted mutation of CD24 have a remarkably reduced rate of proliferation when adoptively transferred into syngeneic lymphopenic hosts. The reduced proliferation cannot be attributed to abnormal survival and homing properties of the CD24-deficient T cells. T cell proliferation in allogeneic hosts is less affected by this mutation. These results demonstrate a novel function of CD24 expressed on T cells. Thus, although distinct costimulatory molecules are involved in antigen-driven proliferation and homeostatic proliferation, both processes can be modulated by costimulatory molecules.


2000 ◽  
Vol 44 (4) ◽  
pp. 1067-1069 ◽  
Author(s):  
Teresa Krakauer

ABSTRACT Proinflammatory cytokines mediate the toxic effect of superantigenic staphylococcal exotoxins (SE). TJU103, a small nonpeptidic molecule that blocks the interaction between major histocompatibility complex class II and CD4 molecules inhibited SE-stimulated T-cell proliferation (by 92%) and production of tumor necrosis factor, interleukin 1β, interleukin 6, and gamma interferon (by 66, 56, 76, and 72%, respectively) by human peripheral blood mononuclear cells. These data suggest that TJU103 may be useful for mitigating the pathogenic effects of SE.


2009 ◽  
Vol 129 (10) ◽  
pp. 2451-2462 ◽  
Author(s):  
Mark J. Bluth ◽  
Lisa C. Zaba ◽  
Dariush Moussai ◽  
Mayte Suárez-Fariñas ◽  
Helen Kaporis ◽  
...  

2003 ◽  
Vol 275 (1-2) ◽  
pp. 57-68 ◽  
Author(s):  
Xuan Duc Nguyen ◽  
Hermann Eichler ◽  
Alex Dugrillon ◽  
Christoph Piechaczek ◽  
Michael Braun ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Mengyao Jin ◽  
Peng Liu

Introduction: Dendritic cells (DCs) that are known as professional antigen-presenting cells have been found to pre-locate in non-inflammatory arterial wall and increasingly accumulate during atherosclerosis progression. Previous findings suggested that residential DCs in the intima are responsible for capturing modified lipids and forming foam cells during the initiation of atherosclerosis. Hypothesis: DC accumulation and enhanced DC-T cell interaction play a critical role in the initiation of atherosclerosis. Methods: We measured plaque formation, vascular DC accumulation and antigen-specific T cell proliferation mediated by isolated aortic cells in ApoE-/- mice, as well as DTR-CD11c/ApoE-/- or DTR-CD11b/ApoE-/- mice for conditional depletion of DCs or macrophages, respectively. A brief high-fat diet for 10 days was used as a model of initial atherosclerosis. Results: In addition to increased intimal DC accumulation and plaque formation in aortic roots, 10 days of HFD induced T cell infiltration in ApoE-/- mice, compared to those without HFD as the control. Isolated aortic cells from mice with 10-day HFD showed stronger capability in inducing antigen-specific T cell proliferation, compare to the control (HFD: 3.14±0.71%; no HFD: 1.56±0.36%; p=0.022). Single diphtheria toxin (DT) injection at day 1 yielded approximately 50% decrease in intimal DC accumulation, as well as 60% attenuation in plaque formation in DTR-CD11c/ApoE-/- mice after 10-day HFD. Capability of stimulating antigen-specific T cell proliferation was also impaired in aortic cells from DC-depleted mice (DT-treated: 1.62±0.30%; PBS-treated: 3.04±0.59%; p= 0.004), along with reduction in indirect conduction of T cell activation. In contrast, no significant changes were found in plaque formation and DC accumulation in DT-injected DTR-CD11b/ApoE-/- mice after 10 days of HFD, compared to control group. Furthermore, depletion of CD11b+ macrophages in either aortas or spleens didn’t alter capability of inducing antigen-specific T cell proliferation in DT-injected mice. Conclusions: These results suggested that vascular DCs rather than macrophages play a more important role in T cell activation and initiation of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document