Grasslands maintained with frequent fire promote cold-tolerant species

2018 ◽  
Vol 29 (3) ◽  
pp. 541-549 ◽  
Author(s):  
Laura M. Ladwig ◽  
Ellen I. Damschen ◽  
Soline Martin-Blangy ◽  
Amy O. Alstad
2018 ◽  
Vol 41 (1) ◽  
pp. 56-70 ◽  
Author(s):  
J.M. Lorch ◽  
J.M. Palmer ◽  
K.J. Vanderwolf ◽  
K.Z. Schmidt ◽  
M.L. Verant ◽  
...  

Author(s):  
Feirong Bai ◽  
Su Yao ◽  
Chengshan Cai ◽  
Tianci Zhang ◽  
Yu Wang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1146
Author(s):  
Parviz Heidari ◽  
Mohammad Reza Amerian ◽  
Gianni Barcaccia

Low temperature is a major limiting factor for the growth and reproduction of some plant species, such as tomato. So far, few studies have been conducted on the effects of low temperature, and the mechanisms of plants’ response to this type of stress is not fully clear. In the current study, the effects of low, nonfreezing temperature (10 °C for three days) on the hormone content, antioxidant activity, and expression patterns of cold-related genes in the leaves of cold-tolerant species (Solanum habrochaites Accession ‘LA1777′) and cold-susceptible species (Solanum lycopersicum cultivar ‘Moneymaker’) were investigated. Low temperature increased the abscisic acid (ABA) content in both tomato species, while the content of zeatin-type cytokinins (ZT) increased in the cold-tolerant species. However, the content of indole-3-acetic acid (IAA) and gibberellic acid (GA) reduced in response to low temperature in susceptible species. Accordingly, cytokinin (CK) is identified as an important hormone associated with low-temperature stress in tomato. In addition, our results indicate that the C-repeat/DRE binding factor 1 (CBF1) gene is less induced in response to low temperature in tomato, although transcription of the inducer of CBF expression 1 (ICE1) gene was upregulated under low temperature in both tomato species. It seems that ICE1 may modulate cold-regulated (COR) genes in a CBF-independent way. In addition, in response to low temperature, the malondialdehyde (MDA) level and membrane stability index (MSI) increased in the susceptible species, indicating that low temperature induces oxidative stress. Additionally, we found that glutathione peroxidase is highly involved in reactive oxygen species (ROS) scavenging induced by low temperature, and antioxidants are more induced in tolerant species. Overall, our results suggest that sub-optimal temperatures promote oxidative stress in tomato and CK is introduced as a factor related to the response to low temperature that requires deeper attention in future breeding programs of tomato.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 84
Author(s):  
Parviz Heidari ◽  
Mahdi Entazari ◽  
Amin Ebrahimi ◽  
Mostafa Ahmadizadeh ◽  
Alessandro Vannozzi ◽  
...  

Low-temperature stress is a type of abiotic stress that limits plant growth and production in both subtropical and tropical climate conditions. In the current study, the effects of 24-epi-brassinolide (EBR) as analogs of brassinosteroids (BRs) were investigated, in terms of hormone content, antioxidant enzyme activity, and transcription of several cold-responsive genes, under low-temperature stress (9 °C) in two different tomato species (cold-sensitive and cold-tolerant species). Results indicated that the treatment with exogenous EBR increases the content of gibberellic acid (GA3) and indole-3-acetic acid (IAA), whose accumulation is reduced by low temperatures in cold-sensitive species. Furthermore, the combination or contribution of BR and abscisic acid (ABA) as a synergetic interaction was recognized between BR and ABA in response to low temperatures. The content of malondialdehyde (MDA) and proline was significantly increased in both species, in response to low-temperature stress; however, EBR treatment did not affect the MDA and proline content. Moreover, in the present study, the effect of EBR application was different in the tomato species under low-temperature stress, which increased the catalase (CAT) activity in the cold-tolerant species and increased the glutathione peroxidase (GPX) activity in the cold-sensitive species. Furthermore, expression levels of cold-responsive genes were influenced by low-temperature stress and EBR treatment. Overall, our findings revealed that a low temperature causes oxidative stress while EBR treatment may decrease the reactive oxygen species (ROS) damage into increasing antioxidant enzymes, and improve the growth rate of the tomato by affecting auxin and gibberellin content. This study provides insight into the mechanism by which BRs regulate stress-dependent processes in tomatoes, and provides a theoretical basis for promoting cold resistance of the tomato.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 29-35 ◽  
Author(s):  
PETER W. HART ◽  
DALE E. NUTTER

During the last several years, the increasing cost and decreasing availability of mixed southern hardwoods have resulted in financial and production difficulties for southern U.S. mills that use a significant percentage of hardwood kraft pulp. Traditionally, in the United States, hardwoods are not plantation grown because of the growth time required to produce a quality tree suitable for pulping. One potential method of mitigating the cost and supply issues associated with the use of native hardwoods is to grow eucalyptus in plantations for the sole purpose of producing hardwood pulp. However, most of the eucalyptus species used in pulping elsewhere in the world are not capable of surviving in the southern U.S. climate. This study examines the potential of seven different cold-tolerant eucalyptus species to be used as replacements for, or supplements to, mixed southern hardwoods. The laboratory pulping and bleaching aspects of these seven species are discussed, along with pertinent mill operational data. Selected mill trial data also are reviewed.


Crop Science ◽  
1992 ◽  
Vol 32 (2) ◽  
pp. 508-508 ◽  
Author(s):  
K. B. Singh ◽  
R. S. Malhotra ◽  
M. C. Saxena
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jie Gao ◽  
Tongxin Dou ◽  
Weidi He ◽  
Ou Sheng ◽  
Fangcheng Bi ◽  
...  

Abstract Background Banana is a tropical fruit with a high economic impact worldwide. Cold stress greatly affects the development and production of banana. Results In the present study, we investigated the functions of MaMAPK3 and MaICE1 involved in cold tolerance of banana. The effect of RNAi of MaMAPK3 on Dajiao (Musa spp. ‘Dajiao’; ABB Group) cold tolerance was evaluated. The leaves of the MaMAPK3 RNAi transgenic plants showed wilting and severe necrotic symptoms, while the wide-type (WT) plants remained normal after cold exposure. RNAi of MaMAPK3 significantly changed the expressions of the cold-responsive genes, and the oxidoreductase activity was significantly changed in WT plants, while no changes in transgenic plants were observed. MaICE1 interacted with MaMAPK3, and the expression level of MaICE1 was significantly decreased in MaMAPK3 RNAi transgenic plants. Over-expression of MaICE1 in Cavendish banana (Musa spp. AAA group) indicated that the cold resistance of transgenic plants was superior to that of the WT plants. The POD P7 gene was significantly up-regulated in MaICE1-overexpressing transgenic plants compared with WT plants, and the POD P7 was proved to interact with MaICE1. Conclusions Taken together, our work provided new and solid evidence that MaMAPK3-MaICE1-MaPOD P7 pathway positively improved the cold tolerance in monocotyledon banana, shedding light on molecular breeding for the cold-tolerant banana or other agricultural species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sheila Bigolin Teixeira ◽  
Stefânia Nunes Pires ◽  
Gabriele Espinel Ávila ◽  
Bruna Evelyn Paschoal Silva ◽  
Victoria Novo Schmitz ◽  
...  

AbstractRice is a crop that presents sensitivity to cold, especially in the germination phase, which leads to high economic losses. Alternative management forms are essential to increase tolerance to low temperatures, and seed priming represents a promising tool. The objective of this study was to investigate the priming effect of the aqueous extract of carrot roots on rice seeds to increase tolerance to low temperatures during germination. Seeds from cultivars BRS Querência (cold-susceptible) and Brilhante (cold-tolerant) were soaked for 24 h in concentrations of 0, 25, 50, and 100% carrot extract, sown on germitest paper and conditioned in BOD for 21 days at 15 °C. As a control, the seeds soaked in water were also germinated at 25 °C. They were evaluated for germination, first germination count, and germination speed index to calculate the stress indices: tolerance index, susceptibility index, and harmonic mean. They were also evaluated for the length and dry mass of shoot and root. The results showed that the rice seeds conditioning in carrot extract effectively reduces the damage caused by cold, significantly increasing the germination speed and the percentage of final germination and the growth evaluations, more expressive at 100% concentration. The stress indexes are efficient in estimating the tolerance of the cultivars and the effect of the different conditions in low-temperature conditions, highlighting the superiority of the Brilhante cultivar.


Sign in / Sign up

Export Citation Format

Share Document