An outbreak of multiple genotypes of Listeria monocytogenes in New Zealand linked to contaminated ready‐to‐eat meats—a retrospective analysis using whole‐genome sequencing

2019 ◽  
Vol 69 (6) ◽  
pp. 392-398 ◽  
Author(s):  
L. Rivas ◽  
P.‐Y. Dupont ◽  
M. Wilson ◽  
M. Rohleder ◽  
B. Gilpin
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Higgins ◽  
Cooper A Grace ◽  
Soon A Lee ◽  
Matthew R Goddard

Abstract Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.


Author(s):  
Adrián Alvarez-Molina ◽  
José F. Cobo-Díaz ◽  
Mercedes López ◽  
Miguel Prieto ◽  
María de Toro ◽  
...  

BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Joseph Crispell ◽  
Ruth N. Zadoks ◽  
Simon R. Harris ◽  
Brent Paterson ◽  
Desmond M. Collins ◽  
...  

Author(s):  
Marian Price-Carter ◽  
Rudiger Brauning ◽  
Geoffrey W. de Lisle ◽  
Paul Livingstone ◽  
Mark Neill ◽  
...  

2019 ◽  
Vol 25 (9) ◽  
pp. 1690-1697
Author(s):  
Laura Ford ◽  
Danielle Ingle ◽  
Kathryn Glass ◽  
Mark Veitch ◽  
Deborah A. Williamson ◽  
...  

2015 ◽  
Vol 81 (17) ◽  
pp. 6024-6037 ◽  
Author(s):  
Matthew J. Stasiewicz ◽  
Haley F. Oliver ◽  
Martin Wiedmann ◽  
Henk C. den Bakker

ABSTRACTWhile the food-borne pathogenListeria monocytogenescan persist in food associated environments, there are no whole-genome sequence (WGS) based methods to differentiate persistent from sporadic strains. Whole-genome sequencing of 188 isolates from a longitudinal study ofL. monocytogenesin retail delis was used to (i) apply single-nucleotide polymorphism (SNP)-based phylogenetics for subtyping ofL. monocytogenes, (ii) use SNP counts to differentiate persistent from repeatedly reintroduced strains, and (iii) identify genetic determinants ofL. monocytogenespersistence. WGS analysis revealed three prophage regions that explained differences between three pairs of phylogenetically similar populations with pulsed-field gel electrophoresis types that differed by ≤3 bands. WGS-SNP-based phylogenetics found that putatively persistentL. monocytogenesrepresent SNP patterns (i) unique to a single retail deli, supporting persistence within the deli (11 clades), (ii) unique to a single state, supporting clonal spread within a state (7 clades), or (iii) spanning multiple states (5 clades). Isolates that formed one of 11 deli-specific clades differed by a median of 10 SNPs or fewer. Isolates from 12 putative persistence events had significantly fewer SNPs (median, 2 to 22 SNPs) than between isolates of the same subtype from other delis (median up to 77 SNPs), supporting persistence of the strain. In 13 events, nearly indistinguishable isolates (0 to 1 SNP) were found across multiple delis. No individual genes were enriched among persistent isolates compared to sporadic isolates. Our data show that WGS analysis improves food-borne pathogen subtyping and identification of persistent bacterial pathogens in food associated environments.


2017 ◽  
Vol 5 (49) ◽  
Author(s):  
Taylor W. Bailey ◽  
Naila C. do Nascimento ◽  
Arun K. Bhunia

ABSTRACT Listeria monocytogenes is an opportunistic invasive foodborne pathogen. Here, we performed whole-genome sequencing of L. monocytogenes strain F4244 (serotype 4b) using Illumina sequencing. The sequence showed 94.5% identity with strain F2365, serotype 4b, and 90.6% with EGD-e, serotype 1/2a.


2019 ◽  
Vol 102 (7) ◽  
pp. 6032-6036
Author(s):  
M. Ricchi ◽  
E. Scaltriti ◽  
G. Cammi ◽  
C. Garbarino ◽  
N. Arrigoni ◽  
...  

2018 ◽  
Vol 82 (1) ◽  
pp. 30-38 ◽  
Author(s):  
RICHARD ELSON ◽  
ADEDOYIN AWOFISAYO-OKUYELU ◽  
TREVOR GREENER ◽  
CRAIG SWIFT ◽  
ANAÏS PAINSET ◽  
...  

ABSTRACT This article describes the identification and investigation of two extended outbreaks of listeriosis in which crabmeat was identified as the vehicle of infection. Comparing contemporary and retrospective typing data of Listeria monocytogenes isolates from clinical cases and from food and food processing environments allowed the detection of cases going back several years. This information, combined with the analysis of routinely collected enhanced surveillance data, helped to direct the investigation and identify the vehicle of infection. Retrospective whole genome sequencing (WGS) analysis of isolates provided robust microbiological evidence of links between cases, foods, and the environments in which they were produced and demonstrated that for some cases and foods, identified by fluorescent amplified fragment length polymorphism, the molecular typing method in routine use at the time, were not part of the outbreak. WGS analysis also showed that the strains causing illness had persisted in two food production environments for many years and in one producer had evolved into two strains over a period of around 8 years. This article demonstrates the value of reviewing L. monocytogenes typing data from clinical cases together with that from foods as a means of identifying potential vehicles and sources of infection in outbreaks of listeriosis. It illustrates the importance of reviewing retrospective L. monocytogenes typing alongside enhanced surveillance data to characterize extended outbreaks and inform control measures. Also, this article highlights the advantages of WGS analysis for strain discrimination and clarification of evolutionary relationships that refine outbreak investigations and improve our understanding of L. monocytogenes in the food chain.


Sign in / Sign up

Export Citation Format

Share Document