scholarly journals A numerical study of pumping effects on flow velocity distributions in Mosul Dam reservoir using the HEC-RAS model

2020 ◽  
Vol 25 (1) ◽  
pp. 72-83
Author(s):  
Mohammad E. Mohammad ◽  
Nadhir Al-Ansari ◽  
Sven Knutsson ◽  
Jan Laue
Author(s):  
Александр Анатольевич Дектерев ◽  
Артем Александрович Дектерев ◽  
Юрий Николаевич Горюнов

Исследование направлено на разработку и апробацию методики численного моделирования аэродинамических и энергетических характеристик циклоидального ротора. За основу взята конфигурация ротора IAT21 L3. Для нее с использованием CFD-пакета ANSYS Fluent построена математическая модель и выполнен расчет. Проанализировано влияние скорости набегающего потока воздуха на движущийся ротор. Математическая модель и полученные результаты исследования могут быть использованы при создании летательных аппаратов с движителями роторного типа. This article addresses the study of the aerodynamic and energy characteristics of a cycloidal rotor subject to the influence of the incoming flow. Cycloidal rotor is one of the perspective devices that provide movement of aircrafts. Despite the fact that the concept of a cycloidal rotor arose in the early twentieth century, the model of a full-scale aircraft has not been yet realized. Foreign scientists have developed models of aircraft ranging in weight from 0.06 to 100 kg. The method of numerical calculation of the cycloidal rotor from the article [1] is considered and realized in this study. The purpose of study was the development and testing of a numerical simulation method for the cycloidal rotor and study aerodynamic and energy characteristics of the rotor in the hovering mode and under the influence of the oncoming flow. The aerodynamic and energy characteristics of the cycloidal rotor, rotating at a speed of 1000 rpm with incoming flow on it with velocities of 20-80 km/h, were calculated. The calculation results showed a directly proportional increase of thrust with an increase of the incoming on the rotor flow velocity, but the power consumed by the rotor was also increased. Increase of the incoming flow velocity leads to the proportional increasing of the lift coefficient and the coefficient of drag. Up to a speed of 80 km/h, an increase in thrust and power is observed; at higher speeds, there is a predominance of nonstationary effects and difficulties in estimating the aerodynamic characteristics of the rotor. In the future, it is planned to consider the 3D formulation of the problem combined with possibility of the flow coming from other sides.


2018 ◽  
Author(s):  
Lei Liu ◽  
Haining Lu ◽  
Jianmin Yang ◽  
Xinliang Tian ◽  
Tao Peng ◽  
...  

Migration of particles in pipe flow is commonly seen in offshore engineering, such as vertical transport of ores in deep sea mining. As the basis of the investigation on fluid-particle two-phase flow, the interaction of two spheres in upward pipe flow is studied by direct numerical simulations in this paper. The pipe flow is set as Poiseuille flow; the Reynolds number is no more than 1250. The dynamic responses of the spheres and the flow pattern are analyzed at different flow velocity. When compared to the sedimentation of two spheres in quiescent flow, the trailing sphere in Poiseuille flow will never surpass the leading one in Poiseuille flow. As the flow velocity increases in the pipe, the spheres are easier to separate after collision. When the flow velocity exceeds a critical value, the spheres will never collide.


Author(s):  
Saeed Naeemi ◽  
Seyed Abdolmehdi Hashemi

In the current work, a numerical study on combustion of premixed H2–air in a micro-cylindrical combustor was carried out and the critical velocity of inlet flow that causes the blow-off was obtained. Furthermore, the effects the equivalence ratio, wall thickness, geometry of combustor and thermal properties of walls on the critical blow-off velocity were studied. The numerical results showed that, increasing the equivalence ratio results in higher critical blow-off velocity. A micro combustor with thicker wall had better flame stability. As the combustor dimeter is decreased the blow-off occur in lower inlet flow velocity. Higher thermal conductivity of walls increases the critical blow-off velocity. In addition, with varying heat convection coefficient (h) and emissivity coefficient [Formula: see text] of the walls from 1 to 60 W/m2.K and 0.2 to 0.8 respectively, the critical blow-off velocity is reduced and shows the importance of wall thermal properties in the design and operation of micro-combustors.


2015 ◽  
Vol 776 ◽  
pp. 161-199 ◽  
Author(s):  
Kyoungsik Chang ◽  
George Constantinescu

This numerical study investigates flow and turbulence structure through and around a circular array of solid circular cylinders of diameter $d$. The region containing the array of rigid cylinders resembles a porous circular cylinder of diameter $D$. The porous cylinder Reynolds number defined with the steady incoming flow velocity is $\mathit{Re}_{D}=10\,000$. Fully three-dimensional (3D) large eddy simulations (LES) are conducted to study the effects of the volume fraction of solids of the porous cylinder ($0.023<\text{SVF}<0.2$) and $d/D$ on the temporal variation and mean values of the drag/lift forces acting on the solid cylinders and on the porous cylinder. The effects of the bleeding flow through the circular porous cylinder on the wake structure and the influence of the SVF and $d/D$ on the onset of flow three-dimensionality within or downstream of the porous cylinder and transition to turbulence are discussed. Results are compared with experimental data, predictions of theoretical models available in the literature and also with the canonical case of a solid cylinder ($\text{SVF}=1,d/D=1$). Three-dimensional LES predict that large-scale wake billows are shed in the wake of the porous cylinder for $\text{SVF}>0.05$, similar to the von Karman vortex street observed for solid cylinders. As the SVF decreases, the length of the separated shear layers (SSLs) of the porous cylinder and the distance from the back of the porous cylinder at which wake billows form increase. For sufficiently low volume fractions of solids (e.g. $\text{SVF}=0.05$, 0.023), no wake billows are shed and the interactions among the wakes of the solid cylinders are weak. Even for $\text{SVF}=0.023$, SSLs containing large-scale turbulent eddies form on the two sides of the porous cylinder, but their ends cannot interact to generate wake billows. In both regimes, the force acting on some of the solid cylinders within the array is highly unsteady. As opposed to results obtained based on 2D simulations, no intermediate regime in which the force acting on the solid cylinders is close to steady is present. Interestingly, an energetic low frequency corresponding to a Strouhal number defined with the diameter of the porous cylinder of approximately 0.2 is present within the porous cylinder and near-wake regions not only for cases where wake billows are generated but also for cases where no wake billows form. In the latter cases, this frequency is due to an instability acting on the SSLs which induces in-phase large-scale undulatory deformations of the two SSLs. A combined drag parameter for the porous cylinder ${\it\Gamma}_{D}=\overline{C}_{d}\,aD/(1-\text{SVF})$ is introduced, where $aD$ is the non-dimensional frontal area per unit volume of the porous cylinder. This parameter characterizes by how much the velocity of the bleeding flow at the back of the porous cylinder is reduced compared with the incoming flow velocity for a given total drag force acting on the porous cylinder. Results from simulations conducted with different values of the SVF, $d/D$ and mean time-averaged solid cylinder streamwise drag parameter, $\overline{C}_{d}$, show that ${\it\Gamma}_{D}$ increases monotonically with increasing $aD$. Several ways of defining the spatial extent of the wake region in a less ambiguous way are proposed.


2015 ◽  
Vol 77 (30) ◽  
Author(s):  
Noor Emilia Ahmad Shafie ◽  
Haslinda Mohamed Kamar ◽  
Nazri Kamsah

A bus compartment requires a good ventilation system to provide sufficient fresh air and a uniform air flow to passengers. This article presents a numerical study using CFD method to investigate the effects of using different ventilation setups on the air flow velocity and temperature distributions inside a passenger bus. Fluent software was used to develop a simplified three-dimensional model of a quarter section of a bus passenger compartment. Turbulent flow simulation was carried out based on a standard k-epsilon model to predict the distributions of air temperature and velocity inside the passenger compartment. The effects of two ventilation setups, namely mixing and displacement ventilations on the air temperature and air flow velocity distribution were also examined. Results of CFD simulations show that the displacement ventilation setup results in more uniform distribution of air flow velocity and air temperature inside the bus passenger compartment.


Author(s):  
Marcel Leo´n De Paz ◽  
B. A. Jubran

A simplified impingement high pressure turbine vane is modeled and solved via Fluent. A relatively flat section of the vane is fitted with 15 0.51mm diameter impingement holes — 5 rows of 3 jets. Results are then compared to known experimental data. Two different turbulence models are used to study this preliminary configuration: K-omega SST and the RNG k-epsilon model. The jet exit Reynolds numbers, cross flow velocity, and the average and local heat transfer distribution are analyzed with varying Reynolds numbers and jet to target spacing. It is observed that the static pressure decreases across the vane with the cross flow velocity increasing towards the trailing edge exit, thereby uniformly increasing the jet exit velocity at each row. Forced convection is seen in the downstream rows in-between span-wise jets due to high cross flow velocities. All numerical results were capable of replicating the higher heat transfer obtained with a higher Reynolds number, and conversely, a lower heat transfer with an increase in jet to target spacing. In its entirety, validating against all correlations, the RNG model obtained an average deviation of 15.7%, while the K-omega SST yielded only 7.8%.


2019 ◽  
Vol 20 (5) ◽  
pp. 503
Author(s):  
Fatma Kria ◽  
Moez Hammami ◽  
Mounir Baccar

In this work, a three-dimensional numerical study of thermal behavior of RHCM mold for automotive parts production was undertaken. Particularly, simulation of several heating/cooling cycles was conducted to determine, at the regular cyclic regime, thermal behaviors at cavity/core plates and polymer as well as thermal and hydrodynamic behaviors at cooling water. It was demonstrated that heating/cooling channels with split flow design are suitable for RHCM regulation. Besides, to further promote part quality, process productivity, and profitability, the effect of cooling parameters, such as the coolant temperature and flow velocity in channels, on the RHCM process efficiency was analyzed. To highlight the influence of these parameters on the productivity and profitability of the process, the cycle time and the consumed energy were used. Temperature gap at the cavity plate surfaces after the heating phase as well as the maximum temperature difference (MTD) in the polymer part after the cooling phase were used as criteria to evaluate the automotive part quality. The results show that the coolant temperature increase in the range between 30 and 60 °C reduces the energy consumption and improves the finished product quality with almost the same cycle time obtained by low coolant temperature. As regards to coolant flow velocity effect, an optimum value of about 1 m.s−1 improves part quality and provides a compromise between the cycle time and process profitability.


2021 ◽  
Vol 5 (1) ◽  
pp. 51-68
Author(s):  
Yoga Satria Putra ◽  
◽  
Mentari Yuniar ◽  
Arie Antasari Kushadiwijayanto ◽  

Riverbank erosion is one indication of watershed damage. One of the causes is the phenomenon of tidal bores waves that occur in a river channel.The strength of tidal bores wave's can be measured based on its shear force parameter and dissipation energy. Wave shear force and dissipation energy are the parameters that play a role in a riverbank erosion process. Both of them are characterized by the Froude number (Fr) which is a function of the upstream river flow velocity (V0), the tidal bores flow velocity from the estuary (Vb), the river depth (h1), and the gravity acceleration (g). A numerical study of the phenomenon of undular tidal bores has been carried out in this article. Five undular bores simulations have been built using the open-source Computational Fluid Dynamics (CFD) software, OpenFOAM. This study aims to analyze the effect of the Froude number variations (Fr) on the magnitude of the wave shear coefficient (ϵ) and dissipation energy ( ) on undular bores cases. Five simulations of undular bores have been generated based on five Froude's numbers, Fr = 1.0, 1.1, 1.2, 1.3, and 1.4. The validation has been performed by comparing the experimental and numerical results from the scientific literature. The analysis results show that the increase in Fr has a significant effect on the increase in the ϵ and .These results indicate that the Froude number variations have influenced the wave shear coefficient and dissipation energy on the undular bores cases. Increasing the Fr values have triggered an increase in the value of ϵ linearly and exponentially. Thus, the erosion that occurs on the riverbank in the undular tidal bores phenomenon could be determined based on Froude's number.


Sign in / Sign up

Export Citation Format

Share Document