Lifespan and telomere length variation across populations of wild‐derived African killifish

2021 ◽  
Author(s):  
Martin Reichard ◽  
Kety Giannetti ◽  
Tania Ferreira ◽  
Ahmed Maouche ◽  
Milan Vrtílek ◽  
...  
2021 ◽  
Author(s):  
Jae Young Choi ◽  
Liliia R Abdulkina ◽  
Jun Yin ◽  
Inna B Chastukhina ◽  
John T Lovell ◽  
...  

Abstract Telomeres are highly repetitive DNA sequences found at the ends of chromosomes that protect the chromosomes from deterioration during cell division. Here, using whole genome re-sequencing and terminal restriction fragment assays, we found substantial natural intraspecific variation in telomere length in Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays). Genome-wide association study (GWAS) mapping in A. thaliana identified 13 regions with GWAS-significant associations underlying telomere length variation, including a region that harbors the telomerase reverse transcriptase (TERT) gene. Population genomic analysis provided evidence for a selective sweep at the TERT region associated with longer telomeres. We found that telomere length is negatively correlated with flowering time variation not only in A. thaliana, but also in maize and rice, indicating a link between life history traits and chromosome integrity. Our results point to several possible reasons for this correlation, including the possibility that longer telomeres may be more adaptive in plants that have faster developmental rates (and therefore flower earlier). Our work suggests that chromosomal structure itself might be an adaptive trait associated with plant life history strategies.


2017 ◽  
Author(s):  
Kevin H-C Wei ◽  
Hemakumar M. Reddy ◽  
Chandramouli Rathnam ◽  
Jimin Lee ◽  
Deanna Lin ◽  
...  

AbstractMeiotic drive occurs when a selfish element increases its transmission frequency above the Mendelian ratio by hijacking the asymmetric divisions of female meiosis. Meiotic drive causes genomic conflict and potentially has a major impact on genome evolution, but only a few drive loci of large effect have been described. New methods to reliably detect meiotic drive are therefore needed, particularly for discovering moderate-strength drivers that are likely to be more prevalent in natural populations than strong drivers. Here we report an efficient method that uses sequencing of large pools of backcross (BC1) progeny to test for deviations from Mendelian segregation genome-wide of single-nucleotide polymorphisms (SNPs) that distinguish the parental strains. We show that meiotic drive can be detected by a characteristic pattern of decay in distortion of SNP frequencies, caused by recombination unlinking the driver from distal loci. We further show that control crosses allow allele-frequency distortion caused by meiotic drive to be distinguished from distortion resulting from developmental effects. We used this approach to test whether chromosomes with extreme telomere-length differences segregate at Mendelian ratios, as telomeric regions are a potential hotspot for meiotic drive due to their roles in meiotic segregation and multiple observations of high rates of telomere sequence evolution. Using four different pairings of long and short telomere strains, we find no evidence that extreme telomere-length variation causes meiotic drive in Drosophila. However, we identify one candidate meiotic driver in a centromere-linked region that shows an ~8% increase in transmission frequency, corresponding to a ~54:46 segregation ratio. Our results show that candidate meiotic drivers of moderate strength can be readily detected and localized in pools of F1 progeny.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Liliia R. Abdulkina ◽  
Callie Kobayashi ◽  
John T. Lovell ◽  
Inna B. Chastukhina ◽  
Behailu B. Aklilu ◽  
...  

AbstractTelomeres cap the physical ends of eukaryotic chromosomes to ensure complete DNA replication and genome stability. Heritable natural variation in telomere length exists in yeast, mice, plants and humans at birth; however, major effect loci underlying such polymorphism remain elusive. Here, we employ quantitative trait locus (QTL) mapping and transgenic manipulations to identify genes controlling telomere length set point in a multi-parent Arabidopsis thaliana mapping population. We detect several QTL explaining 63.7% of the total telomere length variation in the Arabidopsis MAGIC population. Loss-of-function mutants of the NOP2A candidate gene located inside the largest effect QTL and of two other ribosomal genes RPL5A and RPL5B establish a shorter telomere length set point than wild type. These findings indicate that evolutionarily conserved components of ribosome biogenesis and cell proliferation pathways promote telomere elongation.


2002 ◽  
Vol 291 (2) ◽  
pp. 210-214 ◽  
Author(s):  
Takeshi Suda ◽  
Asao Fujiyama ◽  
Mitsuhiro Takimoto ◽  
Masato Igarashi ◽  
Takashi Kuroiwa ◽  
...  

2015 ◽  
Vol 282 (1799) ◽  
pp. 20142263 ◽  
Author(s):  
Muhammad Asghar ◽  
Staffan Bensch ◽  
Maja Tarka ◽  
Bengt Hansson ◽  
Dennis Hasselquist

In a broad range of species—including humans—it has been demonstrated that telomere length declines throughout life and that it may be involved in cell and organismal senescence. This potential link to ageing and thus to fitness has triggered recent interest in understanding how variation in telomere length is inherited and maintained. However, previous studies suffer from two main drawbacks that limit the possibility of understanding the relative importance of genetic, parental and environmental influences on telomere length variation. These studies have been based on (i) telomere lengths measured at different time points in different individuals, despite the fact that telomere length changes over life, and (ii) parent–offspring regression techniques, which do not enable differentiation between genetic and parental components of inheritance. To overcome these drawbacks, in our study of a songbird, the great reed warbler, we have analysed telomere length measured early in life in both parents and offspring and applied statistical models (so-called ‘animal models') that are based on long-term pedigree data. Our results showed a significant heritability of telomere length on the maternal but not on the paternal side, and that the mother's age was positively correlated with their offspring's telomere length. Furthermore, the pedigree-based analyses revealed a significant heritability and an equally large maternal effect. Our study demonstrates strong maternal influence on telomere length and future studies now need to elucidate possible underlying factors, including which types of maternal effects are involved.


Author(s):  
Ligia Panasiak ◽  
Karolina Szubert ◽  
Marcin Polonis ◽  
Konrad Ocalewicz

AbstractSomatic growth is considered to affect pace of the telomere attrition in vertebrates. As normally developed and dwarf fish differ in the body size we have decided to compare telomere length in the rainbow trout (Oncorhynchus mykiss) with normal growth and with growth reduced due to the dwarf condition. Examined 1-year-old fish with normal and dwarf appearance were siblings originated from androgenetic fully homozygous doubled haploid (DH) line of rainbow trout. Particular dwarf individuals had body deformities such as humpback, kyphosis, and lordosis. Somatic cells of examined rainbow trout had an average telomere length between 17 and 20 kb, comparable in females and males. Dwarf rainbow trout exhibited significantly lower body length and weight than their normally developed siblings even though no differences in the telomere length were found between these fishes. Statistical analysis did not exhibit any correlation between body size and the telomere length. Equal length of telomeres observed in the studied normal and dwarf rainbow trout suggests morphological and physiological differences in fish with different growth rates do not affect dynamics of telomeric DNA. Or any variation in the telomere length might have been levelled by telomerase that in rainbow trout is active in all tissues irrespective of the individual developmental stage.


2020 ◽  
Author(s):  
Sil H. J. van Lieshout ◽  
Alex Sparks ◽  
Amanda Bretman ◽  
Chris Newman ◽  
Christina D. Buesching ◽  
...  

Understanding individual variation in fitness-related traits requires separating the environmental and genetic determinants. Telomeres are protective caps at the ends of chromosomes that are thought to be a biomarker of senescence as their length predicts mortality risk and reflect the physiological consequences of environmental conditions. The relative contribution of genetic and environmental factors to individual variation in telomere length is however unclear, yet important for understanding its evolutionary dynamics. In particular, the evidence for transgenerational effects, in terms of parental age at conception, on telomere length is mixed. Here, we investigate the heritability of telomere length, using the ‘animal model’, and parental age at conception effects on offspring telomere length in a wild population of European badgers (Meles meles). While we found no heritability of telomere length, our power to detect heritability was low and a repeatability of 2% across individual lifetimes provides a low upper limit to ordinary heritability. However, year (25%) and cohort (3%) explained greater proportions of the phenotypic variance in telomere length. There was no support for parental age at conception effects, or for longitudinal within-parental age effects on offspring telomere length. Our results indicate a lack of transgenerational effects through parental age at conception and a low potential for evolutionary change in telomere length in this population. Instead, we provide evidence that individual variation in telomere length is largely driven by environmental variation in this wild mammal.


Sign in / Sign up

Export Citation Format

Share Document