scholarly journals Molecular mechanisms controlling fructose‐specific memory and catabolite repression in lactose metabolism by Streptococcus mutans

2020 ◽  
Author(s):  
Lin Zeng ◽  
Robert A. Burne
Brain ◽  
2020 ◽  
Vol 143 (6) ◽  
pp. 1731-1745 ◽  
Author(s):  
Melanie Ramberger ◽  
Antonio Berretta ◽  
Jeanne M M Tan ◽  
Bo Sun ◽  
Sophia Michael ◽  
...  

Abstract Autoantibodies against leucine-rich glioma inactivated 1 (LGI1) are found in patients with limbic encephalitis and focal seizures. Here, we generate patient-derived monoclonal antibodies (mAbs) against LGI1. We explore their sequences and binding characteristics, plus their pathogenic potential using transfected HEK293T cells, rodent neuronal preparations, and behavioural and electrophysiological assessments in vivo after mAb injections into the rodent hippocampus. In live cell-based assays, LGI1 epitope recognition was examined with patient sera (n = 31), CSFs (n = 11), longitudinal serum samples (n = 15), and using mAbs (n = 14) generated from peripheral B cells of two patients. All sera and 9/11 CSFs bound both the leucine-rich repeat (LRR) and the epitempin repeat (EPTP) domains of LGI1, with stable ratios of LRR:EPTP antibody levels over time. By contrast, the mAbs derived from both patients recognized either the LRR or EPTP domain. mAbs against both domain specificities showed varied binding strengths, and marked genetic heterogeneity, with high mutation frequencies. LRR-specific mAbs recognized LGI1 docked to its interaction partners, ADAM22 and ADAM23, bound to rodent brain sections, and induced internalization of the LGI1-ADAM22/23 complex in both HEK293T cells and live hippocampal neurons. By contrast, few EPTP-specific mAbs bound to rodent brain sections or ADAM22/23-docked LGI1, but all inhibited the docking of LGI1 to ADAM22/23. After intrahippocampal injection, and by contrast to the LRR-directed mAbs, the EPTP-directed mAbs showed far less avid binding to brain tissue and were consistently detected in the serum. Post-injection, both domain-specific mAbs abrogated long-term potentiation induction, and LRR-directed antibodies with higher binding strengths induced memory impairment. Taken together, two largely dichotomous populations of LGI1 mAbs with distinct domain binding characteristics exist in the affinity matured peripheral autoantigen-specific memory pools of individuals, both of which have pathogenic potential. In human autoantibody-mediated diseases, the detailed characterization of patient mAbs provides a valuable method to dissect the molecular mechanisms within polyclonal populations.


Microbiology ◽  
2011 ◽  
Vol 157 (10) ◽  
pp. 2880-2890 ◽  
Author(s):  
Jessica K. Kajfasz ◽  
Jacqueline Abranches ◽  
José A. Lemos

The ClpXP proteolytic complex is critical for maintaining cellular homeostasis, as well as expression of virulence properties. However, with the exception of the Spx global regulator, the molecular mechanisms by which the ClpXP complex exerts its influence in Streptococcus mutans are not well understood. Here, microarray analysis was used to provide novel insights into the scope of ClpXP proteolysis in S. mutans. In a ΔclpP strain, 288 genes showed significant changes in relative transcript amounts (P≤0.001, twofold cut-off) as compared with the parent. Similarly, 242 genes were differentially expressed by a ΔclpX strain, 113 (47 %) of which also appeared in the ΔclpP microarrays. Several genes associated with cell growth were downregulated in both mutants, consistent with the slow-growth phenotype of the Δclp strains. Among the upregulated genes were those encoding enzymes required for the biosynthesis of intracellular polysaccharides (glg genes) and malolactic fermentation (mle genes). Enhanced expression of glg and mle genes in ΔclpP and ΔclpX strains correlated with increased storage of intracellular polysaccharide and enhanced malolactic fermentation activity, respectively. Expression of several genes known or predicted to be involved in competence and mutacin production was downregulated in the Δclp strains. Follow-up transformation efficiency and deferred antagonism assays validated the microarray data by showing that competence and mutacin production were dramatically impaired in the Δclp strains. Collectively, our results reveal the broad scope of ClpXP regulation in S. mutans homeostasis and identify several virulence-related traits that are influenced by ClpXP proteolysis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Qiong Zhang ◽  
Qizhao Ma ◽  
Yan Wang ◽  
Hui Wu ◽  
Jing Zou

AbstractGlucosyltransferases (Gtfs) play critical roles in the etiology and pathogenesis of Streptococcus mutans (S. mutans)- mediated dental caries including early childhood caries. Gtfs enhance the biofilm formation and promotes colonization of cariogenic bacteria by generating biofilm extracellular polysaccharides (EPSs), the key virulence property in the cariogenic process. Therefore, Gtfs have become an appealing target for effective therapeutic interventions that inhibit cariogenic biofilms. Importantly, targeting Gtfs selectively impairs the S. mutans virulence without affecting S. mutans existence or the existence of other species in the oral cavity. Over the past decade, numerous Gtfs inhibitory molecules have been identified, mainly including natural and synthetic compounds and their derivatives, antibodies, and metal ions. These therapeutic agents exert their inhibitory role in inhibiting the expression gtf genes and the activities and secretion of Gtfs enzymes with a wide range of sensitivity and effectiveness. Understanding molecular mechanisms of inhibiting Gtfs will contribute to instructing drug combination strategies, which is more effective for inhibiting Gtfs than one drug or class of drugs. This review highlights our current understanding of Gtfs activities and their potential utility, and discusses challenges and opportunities for future exploration of Gtfs as a therapeutic target.


2019 ◽  
Vol 85 (21) ◽  
Author(s):  
K. Lee ◽  
A. R. Walker ◽  
B. Chakraborty ◽  
J. R. Kaspar ◽  
M. M. Nascimento ◽  
...  

ABSTRACT Health-associated biofilms in the oral cavity are composed of a diverse group of microbial species that can foster an environment that is less favorable for the outgrowth of dental caries pathogens, like Streptococcus mutans. A novel oral bacterium, designated Streptococcus A12, was previously isolated from supragingival dental plaque of a caries-free individual and was shown to interfere potently with the growth and virulence properties of S. mutans. In this study, we applied functional genomics to begin to identify molecular mechanisms used by A12 to antagonize, and to resist the antagonistic factors of, S. mutans. Using bioinformatics, genes that could encode factors that enhance the ability of A12 to compete with S. mutans were identified. Selected genes, designated potential competitive factors (pcf), were deleted. Certain mutant derivatives showed a reduced capacity to compete with S. mutans compared to that of the parental strain. The A12 pcfO mutant lost the ability to inhibit comX-inducing peptide (XIP) signaling by S. mutans, while mutants with changes in the pcfFEG locus were impaired in sensing of, and were more sensitive to, the lantibiotic nisin. Loss of PcfV, annotated as a colicin V biosynthetic protein, resulted in diminished antagonism of S. mutans. Collectively, the data provide new insights into the complexities and variety of factors that affect biofilm ecology and virulence. Continued exploration of the genomic and physiological factors that distinguish commensals from truly beneficial members of the oral microbiota will lead to a better understanding of the microbiome and new approaches to promote oral health. IMPORTANCE Advances in defining the composition of health-associated biofilms have highlighted the important role of beneficial species in maintaining health. Comparatively little, however, has been done to address the genomic and physiological bases underlying the probiotic mechanisms of beneficial commensals. In this study, we explored the ability of a novel oral bacterial isolate, Streptococcus A12, to compete with the dental pathogen Streptococcus mutans using various gene products with diverse functions. A12 displayed enhanced competitiveness by (i) disrupting intercellular communication pathways of S. mutans, (ii) sensing and resisting antimicrobial peptides, and (iii) producing factors involved in the production of a putative antimicrobial compound. Research on the probiotic mechanisms employed by Streptococcus A12 is providing essential insights into how beneficial bacteria may help maintain oral health, which will aid in the development of biomarkers and therapeutics that can improve the practice of clinical dentistry.


1990 ◽  
Vol 1 (3) ◽  
pp. 191-205 ◽  
Author(s):  
Michael W. Russell ◽  
Hongyin Wu

Investigations of immune responses to Streptococcus mutans have fostered consideration of vaccination as a possible preventive measure against dental caries. However, the finding that hyperimmune rabbit antisera to S. mutans sometimes give immunofluorescent reactions on human heart raised concerns over safety, especially as most individuals display circulating antibodies to this common oral organism. Recent progress in elucidating the molecular mechanisms of the well-established immunological cross-reactivity between group A streptococci and human heart tissue and the structure of S. mutans antigens permits a re-evaluation of this problem. This review examines the evidence for heart cross-reactivity induced by S. mutans in relation to studies on group A streptococci and current understanding of autoimmunity. Although the mechanisms involved in this phenomenon need further clarification, it now appears that it cannot be ascribed to antigenic similarity between heart tissue and a high-molecular-weight surface protein antigen of S. mutans.


2010 ◽  
Vol 192 (9) ◽  
pp. 2434-2444 ◽  
Author(s):  
Lin Zeng ◽  
Satarupa Das ◽  
Robert A. Burne

ABSTRACT Abundant in milk and other dairy products, lactose is considered to have an important role in oral microbial ecology and can contribute to caries development in both adults and young children. To better understand the metabolism of lactose and galactose by Streptococcus mutans, the major etiological agent of human tooth decay, a genetic analysis of the tagatose-6-phosphate (lac) and Leloir (gal) pathways was performed in strain UA159. Deletion of each gene in the lac operon caused various alterations in expression of a PlacA -cat promoter fusion and defects in growth on either lactose (lacA, lacB, lacF, lacE, and lacG), galactose (lacA, lacB, lacD, and lacG) or both sugars (lacA, lacB, and lacG). Failure to grow in the presence of galactose or lactose by certain lac mutants appeared to arise from the accumulation of intermediates of galactose metabolism, particularly galatose-6-phosphate. The glucose- and lactose-PTS permeases, EIIMan and EIILac, respectively, were shown to be the only effective transporters of galactose in S. mutans. Furthermore, disruption of manL, encoding EIIABMan, led to increased resistance to glucose-mediated CCR when lactose was used to induce the lac operon, but resulted in reduced lac gene expression in cells growing on galactose. Collectively, the results reveal a remarkably high degree of complexity in the regulation of lactose/galactose catabolism.


2009 ◽  
Vol 191 (7) ◽  
pp. 2153-2162 ◽  
Author(s):  
Lin Zeng ◽  
Robert A. Burne

ABSTRACT The ability of Streptococcus mutans to catabolize cellobiose, a β-linked glucoside generated during the hydrolysis of cellulose, is shown to be regulated by a transcriptional regulator, CelR, which is encoded by an operon with a phospho-β-glucosidase (CelA) and a cellobiose-specific sugar phosphotransferase system (PTS) permease (EIICel). The roles of CelR, EIICel components, and certain fructose/mannose-PTS permeases in the transcriptional regulation of the cel locus were analyzed. The results revealed that (i) the celA and celB (EIIBCel) gene promoters require CelR for transcriptional activation in response to cellobiose, but read-through from the celA promoter contributes to expression of the EIICel genes; (ii) the EIICel subunits were required for growth on cellobiose and for transcriptional activation of the cel genes; (iii) CcpA plays little direct role in catabolite repression of the cel regulon, but loss of specific PTS permeases alleviated repression of cel genes in the presence of preferred carbohydrates; and (iv) glucose could induce transcription of the cel regulon when transported by EIICel. CelR derivatives containing amino acid substitutions for five conserved histidine residues in two PTS regulatory domains and an EIIA-like domain also provided important insights regarding the function of this regulator. Based on these data, a model for the involvement of PTS permeases and the general PTS proteins enzyme I and HPr was developed that reveals a critical role for the PTS in CcpA-independent catabolite repression and induction of cel gene expression in S. mutans.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e60465 ◽  
Author(s):  
Lin Zeng ◽  
Sang Chul Choi ◽  
Charles G. Danko ◽  
Adam Siepel ◽  
Michael J. Stanhope ◽  
...  

2019 ◽  
Author(s):  
K Lee ◽  
AR Walker ◽  
B Chakraborty ◽  
JR Kaspar ◽  
MM Nascimento ◽  
...  

AbstractHealth-associated biofilms in the oral cavity are composed of a diverse group of microbial species that can foster an environment that is less favorable for the outgrowth of dental caries pathogens, likeStreptococcus mutans.A novel oral bacterium, designatedStreptococcusA12, was previously isolated from supragingival dental plaque of a caries-free individual, and was shown to interfere potently with the growth and virulence properties ofS. mutans. Here, we apply functional genomics to begin to identify molecular mechanisms used by A12 to antagonize, and to resist the antagonistic factors of,S. mutans.Using bioinformatics, genes that could encode factors that enhance the ability of A12 to compete withS. mutanswere identified. Selected genes, designated aspotentialcompetitive factors (pcf), were deleted. Certain mutant derivatives showed a reduced capacity to compete withS. mutanscompared to the parental strain. The A12pcfOmutant lost the ability to inhibitcomX-inducingpeptide (XIP) signaling byS. mutans, while mutants in thepcfFEGlocus were impaired in sensing of, and were more sensitive to, the lantibiotic nisin. Loss of PcfV, annotated as a colicin V biosynthetic protein, resulted in diminished antagonism ofS. mutans.Collectively, the data provide new insights into the complexities and variety of factors that affect biofilm ecology and virulence. Continued exploration of the genomic and physiologic factors that distinguish commensals from truly beneficial members of the oral microbiota will lead to a better understanding of the microbiome and new approaches to promote oral health.ImportanceAdvances in defining the composition of health-associated biofilms have highlighted the important role for beneficial species in maintaining health. Comparatively little, however, has been done to address the genomic and physiological basis underlying the probiotic mechanisms of beneficial commensals. In this study, we explored the ability of a novel oral bacterial isolate,StreptococcusA12, to compete with the dental pathogenStreptococcus mutans, using various gene products with diverse functions. A12 displayed enhanced competitiveness by: i) disrupting intercellular communication pathways ofS. mutans, ii) sensing and resisting antimicrobial peptides, and iii) producing factors involved in the production of a putative antimicrobial compound. Research on the probiotic mechanisms employed byStreptococcusA12 is providing essential insights into how beneficial bacteria may help maintain oral health, which will aid in the development of biomarkers and therapeutics that can improve the practice of clinical dentistry.


Sign in / Sign up

Export Citation Format

Share Document