scholarly journals Pectobacterium atrosepticum KDPG aldolase, Eda, participates in the Entner–Doudoroff pathway and independently inhibits expression of virulence determinants

2020 ◽  
Author(s):  
Huan Wang ◽  
Yujie Wang ◽  
Sonia Humphris ◽  
Weihua Nie ◽  
Pengfei Zhang ◽  
...  
2013 ◽  
Vol 26 (3) ◽  
pp. 356-366 ◽  
Author(s):  
Marion F. Cubitt ◽  
Peter E. Hedley ◽  
Neil R. Williamson ◽  
Jenny A. Morris ◽  
Emma Campbell ◽  
...  

Plant cell wall–degrading enzymes (PCWDE) are key virulence determinants in the pathogenesis of the potato pathogen Pectobacterium atrosepticum. In this study, we report the impact on virulence of a transposon insertion mutation in the metJ gene that codes for the repressor of the methionine biosynthesis regulon. In a mutant strain defective for the small regulatory RNA rsmB, PCWDE are not produced and virulence in potato tubers is almost totally abolished. However, when the metJ gene is disrupted in this background, the rsmB– phenotype is suppressed and virulence and PCWDE production are restored. Additionally, when metJ is disrupted, production of the quorum-sensing signal, N-(3-oxohexanoyl)-homoserine lactone, is increased. The metJ mutant strains showed pleiotropic transcriptional impacts affecting approximately a quarter of the genome. Genes involved in methionine biosynthesis were most highly upregulated but many virulence-associated transcripts were also upregulated. This is the first report of the impact of the MetJ repressor on virulence in bacteria.


2012 ◽  
Vol 6 (1) ◽  
pp. 14-17
Author(s):  
Jabin Akhter ◽  
Shaheda Anwar ◽  
Sharmeen Ahmed

Urinary tract infection caused by Enterococci has become frequent occurrences in health care settings. Currently they emerged with increasing resistance to multiple antibiotics.  Haemolysin, gelatinase and biofilm production are some markers that have been proposed as possible Enterococcal virulence factors. In view of the increasing importance of Enterococcal infection, the present study was designed to isolate and identify the Enterococci to the species level from urine of urinary tract infection patients and to investigate their possible virulence factors. Biofilm was detected on polystyrene microtitre plate to see the adherence of microorganism. Haemolysin production and gelatin hydrolysis detected by standard microbiological method. Fifty nine enterococcal isolates were speciated by conventional microbiological method and examined for their ability to form biofilm by microtitre plate assay. In this study, biofilm formations by Enterococci were found in 83.33% isolates from catheterized and 56.09% from non-catheterized patients. Aong them, E.faecalis & 50% E.faecium produced biofilm. About 43.63% E.faecalis & 10% E.faecium produced haemolysin and only one isolate were found to be gelatinase positive. Frequency of virulence factors (VFs) in combination was observed in this study. Two VFs (haemolysin and biofilm) were observed in 27.11% in combination and 3 VFs ( haemolysinm biofilm and gelatinase) were present in 1.69% isolates. These results suggest that although there may not be an absolute role for individual virulence determinants in infectivity, combinations of factors may play a role in allowing a biofilm infection to be more resistant to therapy.DOI: http://dx.doi.org/10.3329/bjmm.v6i1.19361 Bangladesh J Med Microbiol 2012; 06(01): 14-17


2020 ◽  
Author(s):  
Sandeep Chakraborty

Weissella strains are currently being used for biotechnological and probiotic purposes [1]. While, Weissella hellenica found in flounder intestine had probiotic effects [2], certain species from this genus are opportunistic pathogens in humans. Apart from being implicated in disease in farmed rainbow trout [3], Weissella has been found to cause the following disease in humans.1. endocarditis [4,5]2. bacteraemia [6]3. prosthetic joint infection [7]Whole genome sequences ‘find several virulence determinants such as collagen adhesins, aggregation sub- stances, mucus-binding proteins, and hemolysins in some species’, as well as antibiotic resistance-encoding genes [8]. Caution is warranted in selecting of Weissella strains as starter cultures or probiotics, if at all, since the other option, Lactobacillus, are rarely involved in human disease.Here, the analysis of the lung microbiota in critically ill trauma patients suffering from acute respiratory distress syndrome [9] shows (Accid:ERR1992912) shows complete colonization of Weissella (Fig 1). While, the study mentions ‘significant enrichment of potential pathogens including Streptococcus, Fusobacterium, Prevotella, Haemophilus and Treponema’, there is no reference to the Weissella genus. The percentages of Weissella strains are :confusa=81, soli=7 ,hellenica=5 ,diestrammenae=2. I believe this is the first reported case of Weissella causing ARDS in humans.


2015 ◽  
Vol 81 (7) ◽  
pp. 2481-2488 ◽  
Author(s):  
Volker Winstel ◽  
Petra Kühner ◽  
Bernhard Krismer ◽  
Andreas Peschel ◽  
Holger Rohde

ABSTRACTGenetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a uniqueStaphylococcus aureusstrain via a specificS. aureusbacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinicalStaphylococcus epidermidisisolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 427
Author(s):  
Martyna Kasela ◽  
Agnieszka Grzegorczyk ◽  
Bożena Nowakowicz-Dębek ◽  
Anna Malm

Nursing homes (NH) contribute to the regional spread of methicillin-resistant Staphylococcus aureus (MRSA). Moreover, residents are vulnerable to the colonization and subsequent infection of MRSA etiology. We aimed at investigating the molecular and phenotypic characteristics of 21 MRSA collected from the residents and personnel in an NH (Lublin, Poland) during 2018. All MRSA were screened for 20 genes encoding virulence determinants (sea-see, eta, etb, tst, lukS-F-PV, eno, cna, ebpS, fib, bbp, fnbA, fnbB, icaADBC) and for resistance to 18 antimicrobials. To establish the relatedness and clonal complexes of MRSA in NH we applied multiple-locus variable-number tandem-repeat fingerprinting (MLVF), pulse field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) typing. We identified four sequence types (ST) among two clonal complexes (CC): ST (CC22) known as EMRSA-15 as well as three novel STs—ST6295 (CC8), ST6293 (CC8) and ST6294. All tested MRSA were negative for sec, eta, etb, lukS-F-PV, bbp and ebpS genes. The most prevalent gene encoding toxin was sed (52.4%; n = 11/21), and adhesins were eno and fnbA (100%). Only 9.5% (n = 2/21) of MRSA were classified as multidrug-resistant. The emergence of novel MRSA with a unique virulence and the presence of epidemic clone EMRSA-15 creates challenges for controlling the spread of MRSA in NH.


2021 ◽  
Vol 22 (5) ◽  
pp. 2244
Author(s):  
Anton E. Shikov ◽  
Yury V. Malovichko ◽  
Arseniy A. Lobov ◽  
Maria E. Belousova ◽  
Anton A. Nizhnikov ◽  
...  

Bacillus thuringiensis, commonly referred to as Bt, is an object of the lasting interest of microbiologists due to its highly effective insecticidal properties, which make Bt a prominent source of biologicals. To categorize the exuberance of Bt strains discovered, serotyping assays are utilized in which flagellin serves as a primary seroreactive molecule. Despite its convenience, this approach is not indicative of Bt strains’ phenotypes, neither it reflects actual phylogenetic relationships within the species. In this respect, comparative genomic and proteomic techniques appear more informative, but their use in Bt strain classification remains limited. In the present work, we used a bottom-up proteomic approach based on fluorescent two-dimensional difference gel electrophoresis (2D-DIGE) coupled with liquid chromatography/tandem mass spectrometry(LC-MS/MS) protein identification to assess which stage of Bt culture, vegetative or spore, would be more informative for strain characterization. To this end, the proteomic differences for the israelensis-attributed strains were assessed to compare sporulating cultures of the virulent derivative to the avirulent one as well as to the vegetative stage virulent bacteria. Using the same approach, virulent spores of the israelensis strain were also compared to the spores of strains belonging to two other major Bt serovars, namely darmstadiensis and thuringiensis. The identified proteins were analyzed regarding the presence of the respective genes in the 104 Bt genome assemblies available at open access with serovar attributions specified. Of 21 proteins identified, 15 were found to be encoded in all the present assemblies at 67% identity threshold, including several virulence factors. Notable, individual phylogenies of these core genes conferred neither the serotyping nor the flagellin-based phylogeny but corroborated the reconstruction based on phylogenomics approaches in terms of tree topology similarity. In its turn, the distribution of accessory protein genes was not confined to the existing serovars. The obtained results indicate that neither gene presence nor the core gene sequence may serve as distinctive bases for the serovar attribution, undermining the notion that the serotyping system reflects strains’ phenotypic or genetic similarity. We also provide a set of loci, which fit in with the phylogenomics data plausibly and thus may serve for draft phylogeny estimation of the novel strains.


2021 ◽  
Vol 6 (2) ◽  
pp. 63
Author(s):  
Abel F.N.D. Phiri ◽  
Akebe Luther King Abia ◽  
Daniel Gyamfi Amoako ◽  
Rajab Mkakosya ◽  
Arnfinn Sundsfjord ◽  
...  

Although numerous studies have investigated diarrhoea aetiology in many sub-Saharan African countries, recent data on Shigella species’ involvement in community-acquired acute diarrhoea (CA-AD) in Malawi are scarce. This study investigated the incidence, antibiotic susceptibility profile, genotypic characteristics, and clonal relationships of Shigella flexneri among 243 patients presenting with acute diarrhoea at a District Hospital in Lilongwe, Malawi. Shigella spp. were isolated and identified using standard microbiological and serological methods and confirmed by identifying the ipaH gene using real-time polymerase chain reaction. The isolates’ antibiotic susceptibility to 20 antibiotics was determined using the VITEK 2 system according to EUCAST guidelines. Genes conferring resistance to sulfamethoxazole (sul1, sul2 and sul3), trimethoprim (dfrA1, dfrA12 and dfrA17) and ampicillin (oxa-1 and oxa-2), and virulence genes (ipaBCD, sat, ial, virA, sen, set1A and set1B) were detected by real-time PCR. Clonal relatedness was assessed using ERIC-PCR. Thirty-four Shigella flexneri isolates were isolated (an overall incidence of 14.0%). All the isolates were fully resistant to sulfamethoxazole/trimethoprim (100%) and ampicillin (100%) but susceptible to the other antibiotics tested. The sul1 (79%), sul2 (79%), sul3 (47%), dfrA12 (71%) and dfrA17 (56%) sulfonamide and trimethoprim resistance genes were identified; Oxa-1, oxa-2 and dfrA1 were not detected. The virulence genes ipaBCD (85%), sat (85%), ial (82%), virA (76%), sen (71%), stx (71%), set1A (26%) and set1B (18%) were detected. ERIC-PCR profiling revealed that the Shigella isolates were genetically distinct and clonally unrelated, indicating the potential involvement of genetically distinct S. flexneri in CA-AD in Malawi. The high percentage resistance to ampicillin and sulfamethoxazole/trimethoprim and the presence of several virulence determinants in these isolates emphasises a need for continuous molecular surveillance studies to inform preventive measures and management of Shigella-associated diarrhoeal infections in Malawi.


Sign in / Sign up

Export Citation Format

Share Document