Molecular epidemiology and phylogenetic analyses of environmental and clinical isolates of Cryptococcus gattii sensu lato in Taiwan

Mycoses ◽  
2020 ◽  
Author(s):  
Kuo‐Hsi Lin ◽  
Yi‐Pei Lin ◽  
Mao‐Wang Ho ◽  
Yee‐Chun Chen ◽  
Wen‐Hsin Chung
2021 ◽  
Author(s):  
xuelei zang ◽  
weixin ke ◽  
lifeng wang ◽  
hua wu ◽  
yemei huang ◽  
...  

Cryptococcus gattii (C. gattii) is a fungal pathogen that once caused an outbreak of cryptococcosis on Vancouver Island, and had spread worldwide, while few data were available in China. In this study, seven clinical isolates of C. gattii VGII were collected from 19 hospitals, Multi-locus Sequence Typing (MLST) analysis and whole-genome sequencing (WGS) was performed, and combined with published data for phylogenetic analysis. In addition, in vitro antifungal susceptibility testing, phenotypic analysis, and in vivo virulence studies were performed, subsequently, histopathological analysis of lung tissue was performed. C.gattii VGII infected patients were mainly immunocompetent male, and most of them had symptoms of central nervous system (CNS) involvement. MLST results showed that isolates from china exhibited high genetic diversity, and sequence type (ST) 7 was the major ST among the isolates. Some clinical isolates showed a close phylogenetic relationship with strains from Australia and South America. All clinical isolates did not show resistance to antifungal drugs. In addition, there was no correlation between virulence factors (temperature, melanin production, and capsule size) and virulence while in vivo experiments showed significant differences in virulence among strains. Lung fungal burden and damage to lung tissue correlated with virulence, and degree of damage to lung tissue in mice may highlight differences in virulence. Our work seeks to provide useful data for molecular epidemiology, antifungal susceptibility, and virulence differences of C. gattii VGII in China.


PLoS ONE ◽  
2015 ◽  
Vol 10 (1) ◽  
pp. e0116302 ◽  
Author(s):  
Nipaporn Tewawong ◽  
Kamol Suwannakarn ◽  
Slinporn Prachayangprecha ◽  
Sumeth Korkong ◽  
Preeyaporn Vichiwattana ◽  
...  

2018 ◽  
Vol 44 (1) ◽  
pp. 20
Author(s):  
Eloiza Teles Caldart ◽  
Helena Mata ◽  
Cláudio Wageck Canal ◽  
Ana Paula Ravazzolo

Background: Phylogenetic analyses are an essential part in the exploratory assessment of nucleic acid and amino acid sequences. Particularly in virology, they are able to delineate the evolution and epidemiology of disease etiologic agents and/or the evolutionary path of their hosts. The objective of this review is to help researchers who want to use phylogenetic analyses as a tool in virology and molecular epidemiology studies, presenting the most commonly used methodologies, describing the importance of the different techniques, their peculiar vocabulary and some examples of their use in virology.Review: This article starts presenting basic concepts of molecular epidemiology and molecular evolution, emphasizing their relevance in the context of viral infectious diseases. It presents a session on the vocabulary relevant to the subject, bringing readers to a minimum level of knowledge needed throughout this literature review. Within its main subject, the text explains what a molecular phylogenetic analysis is, starting from a multiple alignment of nucleotide or amino acid sequences. The different software used to perform multiple alignments may apply different algorithms. To build a phylogeny based on amino acid or nucleotide sequences it is necessary to produce a data matrix based on a model for nucleotide or amino acid replacement, also called evolutionary model. There are a number of evolutionary models available, varying in complexity according to the number of parameters (transition, transversion, GC content, nucleotide position in the codon, among others). Some papers presented herein provide techniques that can be used to choose evolutionary models. After the model is chosen, the next step is to opt for a phylogenetic reconstruction method that best fits the available data and the selected model. Here we present the most common reconstruction methods currently used, describing their principles, advantages and disadvantages. Distance methods, for example, are simpler and faster, however, they do not provide reliable estimations when the sequences are highly divergent. The accuracy of the analysis with probabilistic models (neighbour joining, maximum likelihood and bayesian inference) strongly depends on the adherence of the actual data to the chosen development model. Finally, we also explore topology confidence tests, especially the most used one, the bootstrap. To assist the reader, this review presents figures to explain specific situations discussed in the text and numerous examples of previously published scientific articles in virology that demonstrate the importance of the techniques discussed herein, as well as their judicious use.Conclusion: The DNA sequence is not only a record of phylogeny and divergence times, but also keeps signs of how the evolutionary process has shaped its history and also the elapsed time in the evolutionary process of the population. Analyses of genomic sequences by molecular phylogeny have demonstrated a broad spectrum of applications. It is important to note that for the different available data and different purposes of phylogenies, reconstruction methods and evolutionary models should be wisely chosen. This review provides theoretical basis for the choice of evolutionary models and phylogenetic reconstruction methods best suited to each situation. In addition, it presents examples of diverse applications of molecular phylogeny in virology.


Gene Reports ◽  
2021 ◽  
pp. 101281
Author(s):  
Mohammadreza Sadr ◽  
Seyed Alireza Fahimzad ◽  
Abdollah Karimi ◽  
Fatemeh Fallah ◽  
Shahnaz Armin ◽  
...  

Author(s):  
Murat Telli ◽  
Mete Eyigör ◽  
Berna Korkmazgil ◽  
Neriman Aydın ◽  
Mustafa Altay Atalay

2020 ◽  
Vol 69 (3) ◽  
pp. 436-442 ◽  
Author(s):  
Wei Li ◽  
Zi-Wei Zhang ◽  
Yun Luo ◽  
Ni Liang ◽  
Xiao-Xue Pi ◽  
...  

Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China. Aim. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of Malassezia clinical isolates. Methodology. Malassezia strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively. Results. Among 392 Malassezia isolates from 729 subjects (289 MF, 218 PV and 222 HS), Malassezia furfur and Malassezia globosa accounted for 67.86 and 18.88 %, respectively. M. furfur was the major species in MF and PV patients and HS. Among 60M. furfur and 50M. globosa strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml−1. M. furfur was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with M. globosa (P<0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates. Conclusions. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of M. furfur.


2002 ◽  
Vol 83 (10) ◽  
pp. 2575-2585 ◽  
Author(s):  
Marion F. Bateson ◽  
Rosemarie E. Lines ◽  
Peter Revill ◽  
Worawan Chaleeprom ◽  
Cuong V. Ha ◽  
...  

The potyvirus Papaya ringspot virus (PRSV) is found throughout the tropics and subtropics. Its P biotype is a devastating pathogen of papaya crops and its W biotype of cucurbits. PRSV-P is thought to arise by mutation from PRSV-W. However, the relative impact of mutation and movement on the structure of PRSV populations is not well characterized. To investigate this, we have determined the coat protein sequences of isolates of both biotypes of PRSV from Vietnam (50), Thailand (13), India (1) and the Philippines (1), and analysed them together with 28 PRSV sequences already published, so that we can better understand the molecular epidemiology and evolution of PRSV. In Thailand, variation was greater among PRSV-W isolates (mean nucleotide divergence 7·6%) than PRSV-P isolates (mean 2·6%), but in Vietnamese populations the P and W biotypes were more but similarly diverse. Phylogenetic analyses of PRSV also involving its closest known relative, Moroccan watermelon mosaic virus, indicate that PRSV may have originated in Asia, particularly in the Indian subcontinent, as PRSV populations there are most diverse and hence have probably been present longest. Our analyses show that mutation, together with local and long-distance movement, contributes to population variation, and also confirms an earlier conclusion that populations of the PRSV-P biotype have evolved on several occasions from PRSV-W populations.


2018 ◽  
Vol 56 (7) ◽  
pp. 857-867 ◽  
Author(s):  
Kiem Vu ◽  
George R Thompson ◽  
Chandler C Roe ◽  
Jane E Sykes ◽  
Elizabeth M Dreibe ◽  
...  

Abstract Cryptococcosis is an opportunistic fungal infection caused by members of the two sibling species complexes: Cryptococcus neoformans and Cryptococcus gattii. Flucytosine (5FC) is one of the most widely used antifungals against Cryptococcus spp., yet very few studies have looked at the molecular mechanisms responsible for 5FC resistance in this pathogen. In this study, we examined 11 C. gattii clinical isolates of the major molecular type VGIII based on differential 5FC susceptibility and asked whether there were genomic changes in the key genes involved in flucytosine metabolism. Susceptibility assays and sequencing analysis revealed an association between a point mutation in the cytosine deaminase gene (FCY1) and 5FC resistance in two of the studied 5FC resistant C. gattii VGIII clinical isolates, B9322 and JS5. This mutation results in the replacement of arginine for histidine at position 29 and occurs within a variable stretch of amino acids. Heterologous expression of FCY1 and spot sensitivity assays, however, demonstrated that this point mutation did not have any effect on FCY1 activities and was not responsible for 5FC resistance. Comparative sequence analysis further showed that no changes in the amino acid sequence and no genomic alterations were observed within 1 kb of the upstream and downstream sequences of either cytosine permeases (FCY2-4) or uracil phosphoribosyltransferase (FUR1) genes in 5FC resistant and 5FC susceptible C. gattii VGIII isolates. The herein obtained results suggest that the observed 5FC resistance in the isolates B9322 and JS5 is due to changes in unknown protein(s) or pathway(s) that regulate flucytosine metabolism.


2004 ◽  
Vol 54 (4) ◽  
pp. 1301-1310 ◽  
Author(s):  
R. J. Akhurst ◽  
N. E. Boemare ◽  
P. H. Janssen ◽  
M. M. Peel ◽  
D. A. Alfredson ◽  
...  

The relationship of Photorhabdus isolates that were cultured from human clinical specimens in Australia to Photorhabdus asymbiotica isolates from human clinical specimens in the USA and to species of the genus Photorhabdus that are associated symbiotically with entomopathogenic nematodes was evaluated. A polyphasic approach that involved DNA–DNA hybridization, phylogenetic analyses of 16S rRNA and gyrB gene sequences and phenotypic characterization was adopted. These investigations showed that gyrB gene sequence data correlated well with DNA–DNA hybridization and phenotypic data, but that 16S rRNA gene sequence data were not suitable for defining species within the genus Photorhabdus. Australian clinical isolates proved to be related most closely to clinical isolates from the USA, but the two groups were distinct. A novel subspecies, Photorhabdus asymbiotica subsp. australis subsp. nov. (type strain, 9802892T=CIP 108025T=ACM 5210T), is proposed, with the concomitant creation of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. Analysis of gyrB sequences, coupled with previously published data on DNA–DNA hybridization and PCR-RFLP analysis of the 16S rRNA gene, indicated that there are more than the three subspecies of Photorhabdus luminescens that have been described and confirmed the validity of the previously proposed subdivision of Photorhabdus temperata. Although a non-luminescent, symbiotic isolate clustered consistently with P. asymbiotica in gyrB phylogenetic analyses, DNA–DNA hybridization indicated that this isolate does not belong to the species P. asymbiotica and that there is a clear distinction between symbiotic and clinical species of Photorhabdus.


Mycoses ◽  
2020 ◽  
Vol 63 (12) ◽  
pp. 1341-1351
Author(s):  
Patrícia Helena Grizante Barião ◽  
Ludmilla Tonani ◽  
Tiago Alexandre Cocio ◽  
Roberto Martinez ◽  
Érika Nascimento ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document