scholarly journals Life-history strategy and behavioral type: risk-tolerance reflects growth rate and energy allocation in ant colonies

Oikos ◽  
2016 ◽  
Vol 126 (4) ◽  
pp. 556-564 ◽  
Author(s):  
Sarah E. Bengston ◽  
Min Shin ◽  
Anna Dornhaus
1986 ◽  
Vol 228 (1251) ◽  
pp. 127-132 ◽  

In colonies of the cheilostome bryozoan Celleporella hyalina (L.), water flow regime has a significant effect on colony growth rate and, indirectly, on the number of reproductive zooids produced. Higher growth rates occur under conditions of higher water flow. Sex ratio and reproductive output are not, however, significantly affected. Colonies of different genotypes show significant differences in their reproductive versus somatic investment, and in their allocation of resources to male and female functions. There is therefore genetically based variation in life history strategy within the population of colonies. This variation may reflect limitation of normalizing selection imposed by microenvironmental variability.


Author(s):  
Ken H. Andersen

This chapter proposes a shortlist of fish “master” traits and connects these traits to classic life-history strategy thinking. First, it sets the historical background for the current state-of-the-art thinking about fish life history strategies. From there, the chapter explains that the main axes of variation between fish species can be captured by three traits: the asymptotic size; the growth rate coefficient; and the adult–offspring mass ratio strategy. Together, these three traits determine the central demographic parameters: somatic growth rate, investment in reproduction, age at maturation, survival to maturation, mortality, and so on, and from there follows population-level quantities like population growth rate, population structure, fitness, and selection responses. The chapter concludes with a reflection on the trait-based approach and compares it to other methods of assessment.


2021 ◽  
Vol 4 ◽  
Author(s):  
Karissa G. Lovero ◽  
Kathleen K. Treseder

If we better understand how fungal responses to global change are governed by their traits, we can improve predictions of fungal community composition and ecosystem function. Specifically, we can examine trade-offs among traits, in which the allocation of finite resources toward one trait reduces the investment in others. We hypothesized that trade-offs among fungal traits relating to rapid growth, resource capture, and stress tolerance sort fungal species into discrete life history strategies. We used the Biolog Filamentous Fungi database to calculate maximum growth rates of 37 fungal species and then compared them to their functional traits from the funfun database. In partial support of our hypothesis, maximum growth rate displayed a negative relationship with traits related to resource capture. Moreover, maximum growth rate displayed a positive relationship with amino acid permease, forming a putative Fast Growth life history strategy. A second putative life history strategy is characterized by a positive relationship between extracellular enzymes, including cellobiohydrolase 6, cellobiohydrolase 7, crystalline cellulase AA9, and lignin peroxidase. These extracellular enzymes were negatively related to chitosanase 8, an enzyme that can break down a derivative of chitin. Chitosanase 8 displayed a positive relationship with many traits that were hypothesized to cluster separately, forming a putative Blended life history strategy characterized by certain resource capture, fast growth, and stress tolerance traits. These trait relationships complement previously explored microbial trait frameworks, such as the Competitor-Stress Tolerator-Ruderal and the Yield-Resource Acquisition-Stress Tolerance schemes.


2019 ◽  
Author(s):  
Rohini Singh ◽  
Timothy A. Linksvayer

AbstractWolbachiais a widespread group of maternally-transmitted endosymbiotic bacteria that often manipulates the reproductive strategy and life history of its solitary hosts to enhance its own transmission.Wolbachiaalso commonly infects eusocial insects such as ants, although the effects of infection on social organisms remain largely unknown. We tested the effects of infection on colony-level reproduction and life history traits in the invasive pharaoh ant,Monomorium pharaonis. First we compared the reproductive investment of infected and uninfected colonies with queens of three discrete ages, and we found that infected colonies had increased reproductive investment. Next, we compared the long-term growth and reproduction of infected and uninfected colonies across their life cycle, and we found that infected colonies had increased colony-level growth and early colony reproduction. These colony-level effects ofWolbachiainfection seem to result because of a ‘live fast, die young’ life history strategy of infected queens. Such accelerated colony life cycle is likely beneficial for both the host and the symbiont and may have contributed to success of the highly invasive pharaoh ant.


2021 ◽  
Vol 15 (1) ◽  
pp. 10-26 ◽  
Author(s):  
Aurelio José Figueredo ◽  
Steven C. Hertler ◽  
Mateo Peñaherrera-Aguirre

2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Emeline Mourocq ◽  
Michael Griesser

Biparental care systems are a valuable model to examine conflict, cooperation, and coordination between unrelated individuals, as the product of the interactions between the parents influences the fitness of both individuals. A common experimental technique for testing coordinated responses to changes in the costs of parental care is to temporarily handicap one parent, inducing a higher cost of providing care. However, dissimilarity in experimental designs of these studies has hindered interspecific comparisons of the patterns of cost distribution between parents and offspring. Here we apply a comparative experimental approach by handicapping a parent at nests of five bird species using the same experimental treatment. In some species, a decrease in care by a handicapped parent was compensated by its partner, while in others the increased costs of care were shunted to the offspring. Parental responses to an increased cost of care primarily depended on the total duration of care that offspring require. However, life history pace (i.e., adult survival and fecundity) did not influence parental decisions when faced with a higher cost of caring. Our study highlights that a greater attention to intergenerational trade-offs is warranted, particularly in species with a large burden of parental care. Moreover, we demonstrate that parental care decisions may be weighed more against physiological workload constraints than against future prospects of reproduction, supporting evidence that avian species may devote comparable amounts of energy into survival, regardless of life history strategy.


Sign in / Sign up

Export Citation Format

Share Document