Spermidine enhances the survival of Streptococcus pyogenes M3 under oxidative stress

Author(s):  
Rajashri Banerji ◽  
Parvati Iyer ◽  
Sunil D. Saroj
2002 ◽  
Vol 70 (9) ◽  
pp. 4968-4976 ◽  
Author(s):  
Susanna Ricci ◽  
Robert Janulczyk ◽  
Lars Björck

ABSTRACT Ferric uptake regulator (Fur) and Fur-like proteins form an important family of transcriptional regulators in many bacterial species. In this work we have characterized a Fur-like protein, the peroxide regulator PerR, in an M1 serotype of Streptococcus pyogenes. To determine the role of PerR in S. pyogenes, we inactivated the gene by allelic replacement. PerR-deficient bacteria showed 48% reduction of 55Fe incorporation from the culture medium. Transcriptional analysis revealed that mtsA, encoding a metal-binding protein of an ABC transporter in S. pyogenes, was transcribed at lower levels than were wild-type cells. Although total iron accumulation was reduced, the growth of the mutant strain was not significantly hampered. The mutant showed hyperresistance to hydrogen peroxide, and this response was induced in wild-type cells by growth in aerobiosis, suggesting that PerR acts as an oxidative stress-responsive repressor. PerR may also participate in the response to superoxide stress, as the perR mutant was more sensitive to the superoxide anion and had a reduced transcription of sodA, which encodes the sole superoxide dismutase of S. pyogenes. Complementation of the mutation with a functional perR gene restored 55Fe incorporation, response to peroxide stress, and transcription of both mtsA and sodA to levels comparable to those of wild-type bacteria. Finally, the perR mutant was attenuated in virulence in a murine air sac model of infection (P < 0.05). These results demonstrate that PerR is involved in the regulation of iron homeostasis and oxidative stress responses and that it contributes to the virulence of S. pyogenes.


2010 ◽  
Vol 300 (4) ◽  
pp. 259-264 ◽  
Author(s):  
Chih-Cheng Tsou ◽  
Chuan Chiang-Ni ◽  
Yee-Shin Lin ◽  
Woei-Jer Chuang ◽  
Ming-T. Lin ◽  
...  

2003 ◽  
Vol 71 (5) ◽  
pp. 2656-2664 ◽  
Author(s):  
Robert Janulczyk ◽  
Susanna Ricci ◽  
Lars Björck

ABSTRACT MtsABC is a Streptococcus pyogenes ABC transporter which was previously shown to be involved in iron and zinc accumulation. In this study, we showed that an mtsABC mutant has impaired growth, particularly in a metal-depleted medium and an aerobic environment. In metal-depleted medium, growth was restored by the addition of 10 μM MnCl2, whereas other metals had modest or no effect. A characterization of metal radioisotope accumulation showed that manganese competes with iron accumulation in a dose-dependent manner. Conversely, iron competes with manganese accumulation but to a lesser extent. The mutant showed a pronounced reduction (>90%) of 54Mn accumulation, showing that MtsABC is also involved in Mn transport. Using paraquat and hydrogen peroxide to induce oxidative stress, we show that the mutant has an increased susceptibility to reactive oxygen species. Moreover, activity of the manganese-cofactored superoxide dismutase in the mutant is reduced, probably as a consequence of reduced intracellular availability of manganese. The enzyme functionality was restored by manganese supplementation during growth. The mutant was also attenuated in virulence, as shown in animal experiments. These results emphasize the role of MtsABC and trace metals, especially manganese, for S. pyogenes growth, susceptibility to oxidative stress, and virulence.


2000 ◽  
Vol 182 (19) ◽  
pp. 5290-5299 ◽  
Author(s):  
Katherine Y. King ◽  
Joshua A. Horenstein ◽  
Michael G. Caparon

ABSTRACT Survival in aerobic conditions is critical to the pathogenicity of many bacteria. To investigate the means of aerotolerance and resistance to oxidative stress in the catalase-negative organismStreptococcus pyogenes, we used a genomics-based approach to identify and inactivate homologues of two peroxidase genes, encoding alkyl hydroperoxidase (ahpC) and glutathione peroxidase (gpoA). Single and double mutants survived as well as the wild type under aerobic conditions. However, they were more susceptible than the wild type to growth suppression by paraquat and cumene hydroperoxide. In addition, we show that S. pyogenesdemonstrates an inducible peroxide resistance response when treated with sublethal doses of peroxide. This resistance response was intact in ahpC and gpoA mutants but not in mutants lacking PerR, a repressor of several genes including ahpCand catalase (katA) in Bacillus subtilis. Because our data indicate that these peroxidase genes are not essential for aerotolerance or induced resistance to peroxide stress in S. pyogenes, genes for a novel mechanism of managing peroxide stress may be regulated by PerR in streptococci.


2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A217-A217
Author(s):  
C SPADA ◽  
S SANTINI ◽  
F FOSCHIA ◽  
M PANDOLFI ◽  
V PERRI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document