Assessment of environmental implications of energy consumption towards sustainable development in G7 countries

2021 ◽  
Author(s):  
Bright Akwasi Gyamfi ◽  
Murad A. Bein ◽  
Festus Victor Bekun ◽  
Sarpong Steve Yaw ◽  
Xuan Vinh VO
2021 ◽  
Vol 13 (15) ◽  
pp. 8670
Author(s):  
Xiwen Cui ◽  
Shaojun E ◽  
Dongxiao Niu ◽  
Dongyu Wang ◽  
Mingyu Li

In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.


2021 ◽  
Vol 13 (4) ◽  
pp. 1600
Author(s):  
Weijiang Liu ◽  
Mingze Du ◽  
Yuxin Bai

As the world’s largest developing country, and as the home to many of the world’s factories, China plays a crucial role in the sustainable development of the world economy regarding environmental protection, energy conservation, and emission reduction issues. Based on the data from 2003–2015, this paper examined the green total factor productivity and the technological progress in the Chinese manufacturing industry. A slack-based measure (SBM) Malmquist productivity index was used to measure the bias of technological change (BTC), input-biased technological change (IBTC), and output-biased technological change (OBTC) by decomposing the technological progress. It also investigated the mechanism of environmental regulation, property right structure, enterprise-scale, energy consumption structure, and other factors on China’s technological progress bias. The empirical results showed the following: (1) there was a bias of technological progress in the Chinese manufacturing industry during the research period; (2) although China’s manufacturing industry’s output tended to become greener, it was still characterized by a preference for overall CO2 output; and (3) the impact of environmental regulations on the Chinese manufacturing industry’s technological progress had a significant threshold effect. The flexible control of environmental regulatory strength will benefit the Chinese manufacturing industry’s technological development. (4) R&D investment, export delivery value, and structure of energy consumption significantly contributed to promoting technological progress. This study provides further insight into the sustainable development of China’s manufacturing sector to promote green-biased technological progress and to achieve the dual goal of environmental protection and healthy economic growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Arif Budiyanto ◽  
Muhammad Hanzalah Huzaifi ◽  
Simon Juanda Sirait ◽  
Putu Hangga Nan Prayoga

AbstractSustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.


2021 ◽  
Vol 13 (4) ◽  
pp. 1611
Author(s):  
Saima Mujeed ◽  
Shuangyan Li ◽  
Musarrat Jabeen ◽  
Abdelmohsen A. Nassani ◽  
Sameh E. Askar ◽  
...  

The role of women in economic development and the global environment is vital for progressing them towards the United Nations sustainable development goal (SDG-5) that emphasized the need to empower women in every walk of life. The study examines women’s autonomy in the sustainable development agenda under China’s open innovation system from 1975 to 2019. The study employed an autoregressive distributed lag (ARDL) model, vector autoregressive (VAR) Granger causality, and innovation accounting matrix to estimate parameters. The existing data are summarized and collated in the context of China to explain as a correlational study. The results show that women’s autonomy moderated with technology spills over to decrease greenhouse gas (GHG) emissions and substantiate the hump-shaped relationship between them. The increased spending on research and development (R&D) activities, patent publications, and renewable energy consumption empowers women to be equipped with the latest sustainable technologies to improve environmental quality. The pollution haven hypothesis verifies a given country, where trade liberalization policies tend to increase polluting industries to set up their plants that engaged in dirty production that exacerbate GHG emissions. The causality estimates confirmed that technological innovations and renewable energy consumption leads to women’s autonomy. In contrast, females’ share in the labor force participation rate leads to an increase in renewable energy consumption. Thus, it is evident that there is a positive role of women in the country’s sustainable development.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1372
Author(s):  
Silviu Nate ◽  
Yuriy Bilan ◽  
Danylo Cherevatskyi ◽  
Ganna Kharlamova ◽  
Oleksandr Lyakh ◽  
...  

The paper analyzes the impact of energy consumption on the three pillars of sustainable development in 74 countries. The main methodological challenge in this research is the choice of a single integral indicator for assessing the social component of sustainable development. Disability-adjusted life year (DALY), ecological footprint, and GDP (Gross domestic product) are used to characterize the social, ecological, and economical pillars. The concept of physics, namely the concept of density (specific gravity), is used. It characterizes the ratio of the mass of a substance to its volume, i.e., reflects the saturation of a certain volume with this substance. Thus, to assess the relationship between energy consumption and the three foundations of sustainable development, it is proposed to determine the energy density of the indicators DALY, the ecological footprint, and GDP. The reaction to changes in energy consumption is described by the elasticity of energy density functions, calculated for each of the abovementioned indicators. The state of the social pillar is mostly dependent on energy consumption. As for the changes in the ecological pillar, a 1% reduction in energy consumption per capita gives only a 0.6% ecological footprint reduction, which indicates a low efficiency of reducing energy consumption policy and its danger for the social pillar. The innovative aspect of the research is to apply a cross-disciplinary approach and a calculative technique to identify the impact that each of the pillars of sustainable development imposes on energy policy design. The policy of renewable energy expansion is preferable for all sustainable development pillars.


2021 ◽  
Vol 13 (8) ◽  
pp. 4099
Author(s):  
Ann-Kristin Mühlbach ◽  
Olaf Mumm ◽  
Ryan Zeringue ◽  
Oskars Redbergs ◽  
Elisabeth Endres ◽  
...  

The METAPOLIS as the polycentric network of urban–rural settlement is undergoing constant transformation and urbanization processes. In particular, the associated imbalance of the shrinkage and growth of different settlement types in relative geographical proximity causes negative effects, such as urban sprawl and the divergence of urban–rural lifestyles with their related resource, land and energy consumption. Implicitly related to these developments, national and global sustainable development goals for the building sector lead to the question of how a region can be assessed without detailed research and surveys to identify critical areas with high potential for sustainable development. In this study, the TOPOI method is used. It classifies settlement units and their interconnections along the urban–rural gradient, in order to quantify and assess the land-uptake and global warming potential driven by residential developments. Applying standard planning parameters in combination with key data from a comprehensive life cycle assessment of the residential building stock, a detailed understanding of different settlement types and their associated resource and energy consumption is achieved.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juan Carlos Ríos-Fernández

PurposeThis paper aims to study the use of cool roof technology to avoid unnecessary energy consumption in supermarkets. This will allow to reduce and even cancel the heat absorbed by the roofs, transferring it to the buildings and thus, creating more sustainable cities.Design/methodology/approachThirteen real supermarkets with cool roofs were analysed in Australia, Canada, the USA and Spain. An analysis of so many supermarkets located in different parts of the world with different climatic zones has allowed an inductive analysis, obtaining real data of energy consumption associated with the air conditioning installations for a year with and without implementing the cool roof technology.FindingsThe paper provides insights on how the use of cool roof managed to reduce the need for energy for heating, ventilating and air conditioning by between 3.5 and 38%. Additionally, this technology reduces the annual generation of carbon dioxide (CO2) emissions per square meter of supermarket up to 2.7 kgCO2/m2. It could be an economical technology to apply in new and old buildings with a period of average economic recovery of four years.Research limitations/implicationsBecause of the chosen research approach, the research results may be generalisable. Therefore, researchers are encouraged to test proposals in construction with other uses.Practical implicationsThe paper includes economic and environmental implications for the development of cool roof technology and smooths the way for its implementation to increase energy efficiency in commercial buildings.Originality/valueThis paper is an innovative contribution to the application of cool roof technology as a source of energy savings in commercial construction through the analysis of supermarkets located in different countries with different climate zones. This will help other researchers to advance in this field and facilitate the implementation of the technology.


Sign in / Sign up

Export Citation Format

Share Document