scholarly journals Transcriptional activation of rice CINNAMOYL‐CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots

Author(s):  
Seung Woon Bang ◽  
Seowon Choi ◽  
Xuanjun Jin ◽  
Se Eun Jung ◽  
Joon Weon Choi ◽  
...  



1999 ◽  
Vol 112 (4) ◽  
pp. 515-523
Author(s):  
L. McLaughlin ◽  
B. Burchell ◽  
M. Pritchard ◽  
C.R. Wolf ◽  
T. Friedberg

Some xenobiotics induce membrane-bound drug metabolizing enzymes (Xme) and a profound proliferation of the endoplasmic reticulum (ER) in vivo. However these effects are much weaker in vitro, possibly due to absence of certain transcription factors. We tested the possibility that ER proliferation can affect the level of ER-resident enzymes even in the absence of transcriptional activation. For this purpose we analysed the effects of compactin, which has been shown to induce ER proliferation in vitro, on recombinant Xme, which were expressed from a constitutive viral promoter. High levels of recombinant UDP-glucuronosyltransferase UGT1A6 were achieved by amplification of the UGT1A6 cDNA using the dihydrofolate reductase cDNA as selectable marker in DHFR- CHO cells. Treatment of the resulting cell lines with lipoprotein-deficient serum in the absence and presence of compactin for 5 days resulted in a 1.3- and 2.3-fold, respectively, increase of the UGT enzyme activity towards 4-methylumbelliferone, paralleled by an induction of immunoreactive UGT1A6 protein. Similarly, treatment with this 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor increased the endogenous P450 reductase activity 2.6-fold, concomitant with an increase of immunodetectable protein. As expected compactin induced the level of 3-hydroxy-3-methylglutaryl-CoA reductase. Increased levels of this protein have been associated with a proliferation of the ER. Compactin treatment of a separate cell line that expressed recombinant human P450 reductase increased this enzyme activity fivefold. Pulse-chase experiments revealed that the induction of the recombinant Xme by compactin was most likely due to decreased protein degradation. Our results show that enzyme systems unrelated to those involved in cholesterol biosynthesis are affected by compounds known to affect membrane biogenesis. Since this effect extends to heterologously expressed enzymes, it also provides an efficient means by which to increase the levels of recombinant ER proteins.



Author(s):  
Yang Xiang ◽  
Xiujuan Sun ◽  
Xiangli Bian ◽  
Tianhui Wei ◽  
Tong Han ◽  
...  

Abstract Drought stress severely limits the growth, development, and productivity of crops, and therefore understanding the mechanisms by which plants respond to drought is crucial. In this study, we cloned a maize NAC transcription factor, ZmNAC49, and identified its function in response to drought stress. We found that ZmNAC49 is localized in the nucleus and has transcriptional activation activity. ZmNAC49 expression is rapidly and strongly induced by drought stress, and overexpression enhances stress tolerance in maize. Overexpression also significant decreases the transpiration rate, stomatal conductance, and stomatal density in maize. Detailed study showed that ZmNAC49 overexpression affects the expression of genes related to stomatal development, namely ZmTMM, ZmSDD1, ZmMUTE, and ZmFAMA. In addition, we found that ZmNAC49 can directly bind to the promoter of ZmMUTE and suppress its expression. Taken together, our results show that the transcription factor ZmNAC49 represses ZmMUTE expression, reduces stomatal density, and thereby enhances drought tolerance in maize.



2014 ◽  
Vol 26 (9) ◽  
pp. 3709-3727 ◽  
Author(s):  
H. Pan ◽  
R. Zhou ◽  
G. V. Louie ◽  
J. K. Muhlemann ◽  
E. K. Bomati ◽  
...  


2014 ◽  
Vol 23 (3) ◽  
pp. 503-517 ◽  
Author(s):  
Andrea Giordano ◽  
Zhiqian Liu ◽  
Stephen N. Panter ◽  
Adam M. Dimech ◽  
Yongjin Shang ◽  
...  




1993 ◽  
Vol 13 (9) ◽  
pp. 5175-5185 ◽  
Author(s):  
M J Evans ◽  
J E Metherall

Cholesterol biosynthesis and uptake are controlled by a classic end product-feedback mechanism whereby elevated cellular sterol levels suppress transcription of the genes encoding 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, HMG-CoA reductase, and the low-density lipoprotein receptor. The 5'-flanking region of each gene contains a common cis-acting element, designated the sterol regulatory element (SRE), that is required for transcriptional regulation. In this report, we describe mutant Chinese hamster ovary (CHO) cell lines that lack SRE-dependent transcription. Mutant cell lines were isolated on the basis of their ability to survive treatment with amphotericin B, a polyene antibiotic that kills cells by interacting with cholesterol in the plasma membrane. Four mutant lines (SRD-6A, -B, -C, and -D) were found to be cholesterol auxotrophs and demonstrated constitutively low levels of mRNA for all three sterol-regulated genes even under conditions of sterol deprivation. The mutant cell lines were found to be genetically recessive, and all four lines belonged to the same complementation group. When transfected with a plasmid containing a sterol-regulated promoter fused to a bacterial reporter gene, SRD-6B cells demonstrated constitutively low levels of transcription, in contrast to wild-type CHO cells, which increased transcription under conditions of sterol deprivation. Mutation of the SREs in this plasmid prior to transfection reduced the level of expression in wild-type CHO cells deprived of sterols to the level of expression found in SRD-6B cells. The defect in SRD-6 cells is limited to transcriptional regulation, since posttranscriptional mechanisms of sterol-mediated regulation were intact: the cells retained the ability to posttranscriptionally suppress HMG-CoA reductase activity and to stimulate acyl-CoA:cholesterol acyltransferase activity. These results suggest that SRD-6 cells lack a factor required for SRE-dependent transcriptional activation. We contrast these cells with a previously isolated oxysterol-resistant cell line (SRD-2) that lacks a factor required for SRE-dependent transcriptional suppression and propose a model for the role of these genetically defined factors in sterol-mediated transcriptional regulation.



2011 ◽  
Vol 49 (2) ◽  
pp. 138-145 ◽  
Author(s):  
Sameer Srivastava ◽  
Ranadheer K. Gupta ◽  
Manish Arha ◽  
Rishi K. Vishwakarma ◽  
Shuban K. Rawal ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document