Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses

2021 ◽  
Author(s):  
Yi Ding ◽  
Donald M Gardiner ◽  
Jonathan J Powell ◽  
Michelle L Colgrave ◽  
Robert F Park ◽  
...  
Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingluan Han ◽  
Xiaoyu Wang ◽  
Fengpin Wang ◽  
Zhe Zhao ◽  
Gousi Li ◽  
...  

Abstract Background Avr-Pita was the first effector identified in the blast fungus (Magnaporthe oryzae)–rice (Oryza sativa) pathosystem. However, the molecular mechanism underlying its effects on the host plant has remained a long-standing mystery. Results Here, we report that ectopically expressing Avr-Pita in rice enhances susceptibility to M. oryzae and suppresses pathogen-associated molecular pattern (PAMP)-triggered defense responses. Avr-Pita targets the host mitochondria and interacts with the cytochrome c oxidase (COX) assembly protein OsCOX11, a key regulator of mitochondrial reactive oxygen species (ROS) metabolism in rice. Overexpressing Avr-Pita or OsCOX11 increased COX activity and decreased ROS accumulation triggered by the fungal PAMP chitin. OsCOX11-overexpressing plants showed increased susceptibility to M. oryzae, whereas OsCOX11-knockdown plants showed resistance to M. oryzae. Conclusions Taken together, these findings suggest that the fungal pathogen M. oryzae delivers the effector Avr-Pita to the host plant, where it enhances COX activity thus decreasing ROS accumulation. Therefore, this effector suppresses host innate immunity by perturbing ROS metabolism in the mitochondria.


Author(s):  
Raheleh Dehgahi ◽  
Sreeramanan Subramaniam ◽  
Latiffah Zakaria ◽  
Alireza Joniyas ◽  
Farid Beiki Firouzjahi ◽  
...  

Author(s):  
Anna Fitriana ◽  
Lukman Hakim ◽  
Marlina Marlina

Potato leaf blight is caused by Phytophthora infestans fungus is one of the important diseases in potato plants. The decrease in potato production due to P. infestans can reach 90%. Until now, P. infestans pathogen attack is an important problem and there is no fungicide that is really effective against the disease. This study aims to examine the effectiveness of endophytic fungi from potato roots in suppressing the development of P. infestans potato leaf blight disease carried out at University Farm Stasiun Riset Bener Meriah (UFBM) Syiah Kuala University Tunyang Village, Timang Gajah District, Bener Meriah Regency from May to October 2014. The method used is the experimental method. The results of this study indicate that endophytic fungi from the roots of potato plants in coffee skin compost media can suppress the development of leaf blight caused by P. infestans, endophytic fungi from potato plant roots in coffee skin compost media. The best results were found in B9 endophytic fungi isolates with the intensity of the pathogen attack P. infestans 48.00%, the intensity of damage to potato plants due to pathogen P. infestans and 2.60%, the weight of healthy tubers 332.4 grams.


2021 ◽  
Author(s):  
Nilanjan Sinha ◽  
Sourav Kumar Patra ◽  
Tuhin Subhra Sarkar ◽  
Sanjay Ghosh

Abstract Macrophomina phaseolina, a necrotrophic fungal pathogen is known to cause charcoal rot disease in food crops, pulse crops, oil crops and cotton and fibre crops. Necrotrophic fungi survive on dead plant tissue. It is well known that reactive oxygen species (ROS) are produced by host plant during plant pathogen interaction. However, it is still unclear how M. phaseolina can overcome the ROS induced cellular damage. To mimic the invasion of M. phaseolina inside the plant cell wall, we developed solid substrate fermentation where M. phaseolina spore suspension was inoculated on wheat bran bed and incubated for vegetative growth. To analyse the secretome of M. phaseolina after different day interval, its secretory material was collected and concentrated. Both superoxide dismutase (SOD) and catalase were detected in the secretome by zymogram. The presence of SOD and catalase was further confirmed by liquid chromatography based mass spectrometry. The physicochemical properties of M. phaseolina catalase in terms of stability towards pH, temperature, metal ions and chaotropic agent and inhibitors indicated its fitness at different environmental conditions. Apart from the production of catalase in SSF, the studies on this particular microorganism may also have significance in necrotrophic fungal pathogen and their susceptible host plant interaction.


2020 ◽  
Vol 96 (11) ◽  
Author(s):  
S S Botnen ◽  
E Thoen ◽  
P B Eidesen ◽  
A K Krabberød ◽  
H Kauserud

ABSTRACT The number of plant species regarded as non-mycorrhizal increases at higher latitudes, and several plant species in the High-Arctic Archipelago Svalbard have been reported as non-mycorrhizal. We used the rRNA ITS2 and 18S gene markers to survey which fungi, as well as other micro-eukaryotes, were associated with roots of 31 arctic plant species not usually regarded as mycorrhizal in Svalbard. We assessed to what degree the root-associated fungi showed any host preference and whether the phylogeny of the plant hosts may mirror the composition of root-associated fungi. Fungal communities were largely structured according to host plant identity and to a less extent by environmental factors. We observed a positive relationship between the phylogenetic distance of host plants and the distance of fungal community composition between samples, indicating that the evolutionary history of the host plants plays a major role for which fungi colonize the plant roots. In contrast to the ITS2 marker, the 18S rRNA gene marker showed that chytrid fungi were prevalently associated with plant roots, together with a wide spectrum of amoeba-like protists and nematodes. Our study confirms that arbuscular mycorrhizal (AM) fungi are present also in arctic environments in low abundance.


Sign in / Sign up

Export Citation Format

Share Document