Energy Harvesting Capability of Lipid-Merocyanine Macromolecules: A New Design and Performance Model Development

2013 ◽  
Vol 90 (3) ◽  
pp. 517-521 ◽  
Author(s):  
Lobat Tayebi ◽  
Masoud Mozafari ◽  
Rita El-khouri ◽  
Parvaneh Rouhani ◽  
Daryoosh Vashaee
2011 ◽  
Vol 84 (4) ◽  
pp. 493-506
Author(s):  
Irene S. Yurovska ◽  
Michael D. Morris ◽  
Theo Al

Abstract Racing tires and motorcycle tires present individual segments of the tire market. For instance, while the average life of car and truck tires is 50 000 miles, the average life of race tires is 100 miles. Because tires play a critical role in a race, technical demands to assure safety and performance are growing. Similarly, tires have a large influence on safety, handling/grip, and performance of the rapidly growing world fleet of motorcycles, due to the fact of only two wheels being in contact with the ground. Thus, the common feature of both market segments is that the typical tire compromise of wear, rolling resistance, and traction is strongly weighted toward traction. Most of the recent efforts of rubber scientists have been directed toward lowering rolling resistance of the tread compounds, which left a certain void in the science of compounding for racing and motorcycle treads. Particularly, the industrial assortment of polymers and fillers used for motorcycle treads is commonly different from that used for car or truck treads, but it is not known how the filler properties affect the hysteresis–stiffness compromise. The objective of this study is to evaluate the effects of the carbon black characteristics on the important properties of a typical racing and motorcycle tire tread compound. More than 50 individual carbon blacks were mixed in a SBR formulation. The acquired data were statistically analyzed, and a linear multiple regression model was developed to relate rubber properties (responses), such as static modulus, complex dynamic modulus, hysteresis, and viscosity to the key carbon black characteristics (variables) of surface area, structure, aggregate size distribution, and surface activity. Prediction profiles created from the model demonstrate rubber performance limits for the range of carbon blacks tested, and indicate the niches to provide required combinations of the rubber properties.


Author(s):  
J. S. Bell ◽  
P. K. Chan ◽  
A. Prudil

Thorium-based fuel cycles can improve fuel sustainability within the nuclear power industry. The Canadian supercritical water-cooled reactor (SCWR) concept uses this path to achieve the sustainability requirement of the Gen-IV Forum. The study of thorium dioxide/thoria ThO2-based fuel irradiation behavior is significantly less advanced than that of uranium dioxide (UO2) fuel, although ThO2 possesses superior thermal conductivity, thermal expansion, higher melting temperature, and oxidation resistance that may improve both fuel performance and safety. The fuel and sheath modeling tool (FAST), a fuel performance model for UO2 fuel, was developed at the Royal Military College of Canada (RMCC). FAST capability has been extended to include thoria (ThO2), thorium uranium dioxide (Th,U)O2, and thorium plutonium dioxide (Th,Pu)O2 as fuel pellet materials, to aid in designing and performance assessment of Th-based fuels, including SCWR (Th,Pu)O2 fuel. The development and integration of ThO2 and (Th,U)O2 models into the existing FAST model led to the multipellet material FAST (MPM-FAST). Model development was performed in collaboration between RMCC and Canadian Nuclear Laboratories (CNL). This paper presents an outline of the ThO2 and (Th,U)O2 MPM-FAST model, a comparison between modeling results with postirradiation examination (PIE) data from a test conducted at CNL, and an account of the knowledge gap between our ability to model ThO2 and (Th,U)O2 fuel compared to UO2. Results are encouraging when compared to PIE data.


Author(s):  
Lucio Salles de Salles ◽  
Lev Khazanovich

The Pavement ME transverse joint faulting model incorporates mechanistic theories that predict development of joint faulting in jointed plain concrete pavements (JPCP). The model is calibrated using the Long-Term Pavement Performance database. However, the Mechanistic-Empirical Pavement Design Guide (MEPDG) encourages transportation agencies, such as state departments of transportation, to perform local calibrations of the faulting model included in Pavement ME. Model calibration is a complicated and effort-intensive process that requires high-quality pavement design and performance data. Pavement management data—which is collected regularly and in large amounts—may present higher variability than is desired for faulting performance model calibration. The MEPDG performance prediction models predict pavement distresses with 50% reliability. JPCP are usually designed for high levels of faulting reliability to reduce likelihood of excessive faulting. For design, improving the faulting reliability model is as important as improving the faulting prediction model. This paper proposes a calibration of the Pavement ME reliability model using pavement management system (PMS) data. It illustrates the proposed approach using PMS data from Pennsylvania Department of Transportation. Results show an increase in accuracy for faulting predictions using the new reliability model with various design characteristics. Moreover, the new reliability model allows design of JPCP considering higher levels of traffic because of the less conservative predictions.


Author(s):  
Kui Xu ◽  
Ming Zhang ◽  
Jie Liu ◽  
Nan Sha ◽  
Wei Xie ◽  
...  

Abstract In this paper, we design the simultaneous wireless information and power transfer (SWIPT) protocol for massive multi-input multi-output (mMIMO) system with non-linear energy-harvesting (EH) terminals. In this system, the base station (BS) serves a set of uplink fixed half-duplex (HD) terminals with non-linear energy harvester. Considering the non-linearity of practical energy-harvesting circuits, we adopt the realistic non-linear EH model rather than the idealistic linear EH model. The proposed SWIPT protocol can be divided into two phases. The first phase is designed for terminals EH and downlink training. A beam domain energy beamforming method is employed for the wireless power transmission. In the second phase, the BS forms the two-layer receive beamformers for the reception of signals transmitted by terminals. In order to improve the spectral efficiency (SE) of the system, the BS transmit power- and time-switching ratios are optimized. Simulation results show the superiority of the proposed beam-domain SWIPT protocol on SE performance compared with the conventional mMIMO SWIPT protocols.


Author(s):  
Michael Gorelik ◽  
Jacob Obayomi ◽  
Jack Slovisky ◽  
Dan Frias ◽  
Howie Swanson ◽  
...  

While turbine engine Original Equipment Manufacturers (OEMs) accumulated significant experience in the application of probabilistic methods (PM) and uncertainty quantification (UQ) methods to specific technical disciplines and engine components, experience with system-level PM applications has been limited. To demonstrate the feasibility and benefits of an integrated PM-based system, a numerical case study has been developed around the Honeywell turbine engine application. The case study uses experimental observations of engine performance such as horsepower and fuel flow from a population of engines. Due to manufacturing variability, there are unit-to-unit and supplier-to-supplier variations in compressor blade geometry. Blade inspection data are available for the characterization of these geometric variations, and CFD analysis can be linked to the engine performance model, so that the effect of blade geometry variation on system-level performance characteristics can be quantified. Other elements of the case study included the use of engine performance and blade geometry data to perform Bayesian updating of the model inputs, such as efficiency adders and turbine tip clearances. A probabilistic engine performance model was developed, system-level sensitivity analysis performed, and the predicted distribution of engine performance metrics was calibrated against the observed distributions. This paper describes the model development approach and key simulation results. The benefits of using PM and UQ methods in the system-level framework are discussed. This case study was developed under Defense Advanced Research Projects Agency (DARPA) funding which is gratefully acknowledged.


Author(s):  
Chaoqin Zhai ◽  
David H. Archer ◽  
John C. Fischer

This paper presents the development of an equation based model to simulate the combined heat and mass transfer in the desiccant wheels. The performance model is one dimensional in the axial direction. It applies a lumped formulation in the thickness direction of the desiccant and the substrate. The boundary conditions of this problem represent the inlet outside/process and building exhaust/regeneration air conditions as well as the adiabatic condition of the two ends of the desiccant composite. The solutions of this model are iterated until the wheel reaches periodic steady state operation. The modeling results are obtained as the changes of the outside/process and building exhaust/regeneration air conditions along the wheel depth and the wheel rotation. This performance model relates the wheel’s design parameters, such as the wheel dimension, the channel size and the desiccant properties, and the wheel’s operating variables, such as the rotary speed and the regeneration air flowrate, to its operating performance. The impact of some practical issues, such as wheel purge, residual water in the desiccant and the wheel supporting structure, on the wheel performance has also been investigated.


2019 ◽  
Author(s):  
Amir Ashrafi ◽  
Ahad Zare Ravasan ◽  
Peter Trkman ◽  
Samira Afshari

1970 ◽  
Vol 10 (1-2) ◽  
pp. 119-131 ◽  
Author(s):  
Gerard De Valence

This is a reprint from Vol 1, no 1, which has not previously been available in electronic format.The analysis and understanding of the conduct and performance of an industry begins with a study of its structure. However, before analysing an industry's structure it is necessary to define the industry and identify its size, scope and scale to establish its true economic contribution. This paper discusses the size and scope of the Australian building and construction industry, firstly froma traditional industry economics approach by firm size and business characteristics using data fron three construction industry surveys done over 15 years by the ABS. Secondly, data from an industry 'cluster' perspective is shown. The objective of the paper is to compare the differences found in industry size and scope in the structure-conduct-performance approach and the alternative industry cluster approach. Each model reveals different characteristics of the industry. The conclusion finds that the building and construction industry is a case where the traditional structure-conduct-performance model cannot be easily applied. 


Sign in / Sign up

Export Citation Format

Share Document