scholarly journals Hypomethylation of the aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala mimics the adaptive transition into the terrestrial morphotype

2020 ◽  
Vol 170 (2) ◽  
pp. 280-298 ◽  
Author(s):  
Julien Genitoni ◽  
Danièle Vassaux ◽  
Alain Delaunay ◽  
Sylvie Citerne ◽  
Luis Portillo Lemus ◽  
...  
2018 ◽  
Vol 8 (5) ◽  
pp. 2568-2579 ◽  
Author(s):  
Kevin Billet ◽  
Julien Genitoni ◽  
Michel Bozec ◽  
David Renault ◽  
Dominique Barloy

2020 ◽  
Author(s):  
Luis O. Portillo Lemus ◽  
Michel Bozec ◽  
Marilyne Harang ◽  
Julie Coudreuse ◽  
Jacques Haury ◽  
...  

SummaryFruitfulness and fertility are important components of sexual reproductive success in plants, and often depends on environmental conditions and reproductive systems. For invasive plants, fruitfulness and fertility control their ecological success and adaptation in invaded ecosystems. We studied which factors bring about fruitfulness and fertility in invasive populations of the aquatic plant Ludwigia grandiflora subsp. hexapetala.We analysed fruitfulness and fertility of 37 populations growing under variable climatic conditions in Western Europe, and sub-sampled fruitful and fruitless populations grown in common controlled conditions. We carried out self- and cross-pollinations and measured their floral biometrics.Environmental conditions, and temperature in particular, did not affect fruitfulness and fertility in-situ or in common controlled environments. Hand-pollinations resulted in fruit production by individuals sampled from fruitless populations when pollen came from fruitful populations, and by individuals sampled from fruitful populations whatever the origin of pollen. Floral biometrics evidenced the existence of two floral morphs that overlapped with fruitfulness, and individual incompatibility.Our results rebutted the hypothesis that environmental conditions control fruitfulness and fertility in these invasive populations. We instead found that fruit and seed production were controlled by a reproductive system involving a self-incompatible approach herkogamous morph and a self-compatible reverse herkogamous morph. We assessed the floral morphs distribution worldwide of fruitless and fruitful native and invasive populations that matched our results at larger scale. Our results may constitute the first evidence of a possible heteromorphic self-incompatible system in Ludwigia populations and in Onagraceae phylogeny. It calls for further investigations on reproductive systems in this plant family. Finally, the observation that the self-incompatible morph seemed to be the world most invasive morph in this species tackles our understanding of biological and ecological conditions for invasiveness.Synthesis. Our study showed that fruitfulness and fertility in the aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala depend on a self-incompatibility system coinciding with two floral morphs, rather than environmental conditions and limitations. These new explanations on the sexual success of Ludwigia invasive populations will help defining new predictions about its worldwide spreads and ecological success, and will help reappraising future management plans.


2014 ◽  
Vol 32 (2) ◽  
pp. 212-213
Author(s):  
E. K. Espeland
Keyword(s):  

2021 ◽  
pp. 1-24
Author(s):  
Chad F. Hammer ◽  
John S. Gunn

Abstract Non-native invasive plant species are a major cause of ecosystem degradation and impairment of ecosystem service benefits in the United States. Forested riparian areas provide many ecosystem service benefits and are vital to maintaining water quality of streams and rivers. These systems are also vulnerable to natural disturbances and invasion by non-native plants. We assessed whether planting native trees on disturbed riparian sites may increase biotic resistance to invasive plant establishment in central Vermont in the northeastern United States. The density (stems/m2) of invasive stems was higher in non-planted sites (x̄=4.1 stems/m2) compared to planted sites (x̄=1.3 stems/m2). More than 90% of the invasive plants were Japanese knotweed (Fallopia japonica). There were no significant differences in total stem density of native vegetation between planted and non-planted sites. Other measured response variables such as native tree regeneration, species diversity, soil properties and soil function showed no significant differences or trends in the paired riparian study sites. The results of this case study indicate that tree planting in disturbed riparian forest areas may assist conservation efforts by minimizing the risk of invasive plant colonization.


Author(s):  
Igor Karlovits ◽  
Gregor Lavrič ◽  
Urška Kavčič ◽  
Vladimir Zorić

Author(s):  
Hua Xu ◽  
Ping Chang ◽  
Shaoshan Li ◽  
Jianguo Lu ◽  
Xuejun Lin ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 245
Author(s):  
Hyung-Eun An ◽  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Chang-Bae Kim ◽  
Hah Young Yoo

As greenhouse gases and environmental pollution become serious, the demand for alternative energy such as bioethanol has rapidly increased, and a large supply of biomass is required for bioenergy production. Lignocellulosic biomass is the most abundant on the planet and a large part of it, the second-generation biomass, has the advantage of not being a food resource. In this study, Sicyos angulatus, known as an invasive plant (harmful) species, was used as a raw material for bioethanol production. In order to improve enzymatic hydrolysis, S. angulatus was pretreated with different NaOH concentration at 121 °C for 10 min. The optimal NaOH concentration for the pretreatment was determined to be 2% (w/w), and the glucan content (GC) and enzymatic digestibility (ED) were 46.7% and 55.3%, respectively. Through NaOH pretreatment, the GC and ED of S. angulatus were improved by 2.4-fold and 2.5-fold, respectively, compared to the control (untreated S. angulatus). The hydrolysates from S. angulatus were applied to a medium for bioethanol fermentation of Saccharomyces cerevisiae K35. Finally, the maximum ethanol production was found to be 41.3 g based on 1000 g S. angulatus, which was 2.4-fold improved than the control group.


2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanshan Zhong ◽  
Xiaodan Lu ◽  
Zhiwei Deng ◽  
Ziqing Lu ◽  
Minghui Fu

Abstract Background Glutamine synthetase (GS) acts as a key enzyme in plant nitrogen (N) metabolism. It is important to understand the regulation of GS expression in plant. Promoters can initiate the transcription of its downstream gene. Eichhornia crassipes is a most prominent aquatic invasive plant, which has negative effects on environment and economic development. It also can be used in the bioremediation of pollutants present in water and the production of feeding and energy fuel. So identification and characterization of GS promoter in E. crassipes can help to elucidate its regulation mechanism of GS expression and further to control its N metabolism. Results A 1232 bp genomic fragment upstream of EcGS1b sequence from E. crassipes (EcGS1b-P) has been cloned, analyzed and functionally characterized. TSSP-TCM software and PlantCARE analysis showed a TATA-box core element, a CAAT-box, root specific expression element, light regulation elements including chs-CMA1a, Box I, and Sp1 and other cis-acting elements in the sequence. Three 5′-deletion fragments of EcGS1b upstream sequence with 400 bp, 600 bp and 900 bp length and the 1232 bp fragment were used to drive the expression of β-glucuronidase (GUS) in tobacco. The quantitative test revealed that GUS activity decreased with the decreasing of the promoter length, which indicated that there were no negative regulated elements in the EcGS1-P. The GUS expressions of EcGS1b-P in roots were significantly higher than those in leaves and stems, indicating EcGS1b-P to be a root-preferential promoter. Real-time Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) analysis of EcGS1b gene also showed higher expression in the roots of E.crassipes than in stems and leaves. Conclusions EcGS1b-P is a root-preferential promoter sequence. It can specifically drive the transcription of its downstream gene in root. This study will help to elucidate the regulatory mechanisms of EcGS1b tissue-specific expression and further study its other regulatory mechanisms in order to utilize E.crassipes in remediation of eutrophic water and control its overgrowth from the point of nutrient metabolism.


Sign in / Sign up

Export Citation Format

Share Document