Effect of EGF on expression and localization of maturation-promoting factor, mitogen-activated protein kinase, p34cdc2 and cyclin B during different culture periods on in vitro maturation of canine oocytes

2018 ◽  
Vol 54 (2) ◽  
pp. 325-341 ◽  
Author(s):  
Leda Maria C. Pereira ◽  
Paulo Ricardo O. Bersano ◽  
Danilo D. Rocha ◽  
Maria Denise Lopes
2014 ◽  
Vol 26 (1) ◽  
pp. 130
Author(s):  
N. Z. Saraiva ◽  
C. S. Oliveira ◽  
M. del Collado ◽  
M. R. de Lima ◽  
R. Vantini ◽  
...  

Chemical enucleation using microtubule-depolymerizing drugs is an attractive procedure to simplify the enucleation process in nuclear transfer. The aim of this study was to optimize chemically assisted (CA) and chemically induced (CI) enucleation protocols using metaphase II (MII) and pre-activated bovine oocytes, respectively, and to evaluate the activity of maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) in cytoplasts generated by these techniques. Initially, we determined the shortest effective treatment of MII and activated oocytes with 0.05 μg mL–1 demecolcine. Bovine oocytes in vitro matured (IVM) for 19 h (MII) or activated artificially with 5 μM ionomycin (5 min) and 10 μg mL–1 cycloheximide (5 h) after 26 h IVM were treated with demecolcine and samples were collected at 0, 0.25, 0.5, 1.0, 1.5, and 2.0 h of treatment. Oocytes were then stained with 10 μg mL–1 Hoechst 33342 and the protrusion or enucleation rates were determined. Next, we evaluated histone H1 and myelin basic protein (MBP) kinases, reflecting MPF and MAPK activities, respectively, in oocytes obtained from these treatments, and for that we used the method described by Kubelka et al. (2000 Biol. Reprod. 62, 292–302). Protrusion and enucleation rates were evaluated by the chi-squared (χ2) test, and MPF and MAPK activities were submitted to ANOVA and Tukey's test at 5% significance. For MII oocytes, effects of demecolcine were observed as early as 15 min, with a significant difference (P < 0.05) between control (12/112, 10.7%) and treated (33/114, 28.9%) groups in relation to protrusion rates. The largest number of protrusions was observed after 1.0 h of treatment (control: 15/113, 13.3%a; treated: 45/111, 40.5%b). In pre-activated oocytes, effects of demecolcine were also observed after 15 min, and in both techniques there were no significant differences between groups treated with demecolcine for 1.0, 1.5, or 2.0 h (CA: 40.5 to 52.5% of protrusion; CI: 35.2 to 46.7% of enucleation). In contrast to previous reports in which high concentrations of demecolcine for CA enucleation increased MPF activity, we observed no alterations in the activity of this factor at a demecolcine concentration of 0.05 μg mL–1. Activity of MAPK also did not differ significantly between the control and treated groups throughout evaluation. In the CI technique, a significant difference in MPF activity was observed after 0.5 h (70.3%) and 2.0 h of activation (39.1%), considering that the activity was 100% at the beginning of the evaluation. However, we observed no significant difference between the control and treated groups at any of the time points studied, as verified for MAPK activity. The exact effect of MPF on the nucleus in mammals is not well established. We believe that the use of low concentrations of demecolcine for short periods is less damaging to embryonic development and, until we have a better understanding of the effect of these kinases on the transferred nucleus, we recommend its use for chemical enucleation protocols in bovine. Financial support: FAPESP 2010/20744-6 and 2011/12983-3.


2020 ◽  
Vol 13 (10) ◽  
pp. 2126-2132
Author(s):  
A. A. Muhammad Nur Kasman ◽  
Budi Santoso ◽  
Widjiati Widjiati

Background and Aim: The combination of vitrification techniques and in vitro maturation can reduce oocyte competence. Mitogen-activated protein kinase and maturation-promoting factor are significant in oocyte meiotic maturation regulation. This study aimed to analyze vitrification's effect, after warming followed by in vitro maturation, on the expressions of protein 38 (p38), cyclin-dependent kinase 1 (CDK1), and cyclin B and oocyte maturation level. Materials and Methods: Immature goat oocytes were soaked in vitrification and warming solutions. The procedure was followed by in vitro maturation and in vitro maturation without post-warming vitrification as a control. These oocytes, along with their cumulus, were vitrified using hemistraw in liquid nitrogen. Oocyte maturation was carried out in a maturation medium that was added with 10 μg/mL of FSH, 10 μg/mL of LH, and 1 μg/mL E2 for 22 h. The expressions of p38, CDK1, and cyclin B were observed using immunocytochemical methods, which were assessed semiquantitatively according to the modified Remmele method. The oocyte maturation level was observed using the aceto-orcein staining method based on the achievement of chromosomes up to the metaphase II stage and/or the formation of the polar body I. Results: p38 expression in vitrified oocytes after warming, followed by in vitro maturation, increased insignificantly (p≥0.05), with the acquisition of 3.91±2.69 and 2.69±0.50 in the control oocytes. CDK1 expression in vitrified oocytes decreased significantly (p≤0.05) after warming, followed by in vitro maturation, with the acquisition of 2.73±1.24 and 7.27±4.39 in the control oocytes. Cyclin B expression in vitrified oocytes decreased insignificantly (p≥0.05) after warming, followed by in vitro maturation, with the acquisition of 3.09±1.4 and 4.18±2.61 in the control oocytes. The proportion of vitrified oocyte maturation levels after warming, followed by in vitro maturation, decreased significantly (p≤0.05), with the acquisition of 45.45% and 77.27% in the control oocytes. Conclusion: This study concluded that vitrification after warming resulted in an insignificant increase in p38 expression, a significant decrease in CDK1 expression, an insignificant decrease in cyclin B expression, and a significant reduction in oocyte maturation levels.


2005 ◽  
Vol 17 (2) ◽  
pp. 284
Author(s):  
D.-B. Koo ◽  
J.-I. Chae ◽  
J.-S. Kim ◽  
G. Wee ◽  
B.-S. Song ◽  
...  

Activities of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) of mature oocytes should be decreased to begin subsequent development. In this study, activities of MPF and MAPK were investigated in porcine oocytes after artificial activation. To determine optimal electrical activation, porcine oocytes were exposed to 3 V AC pulse for 5 s followed by a single DC pulse of various electric field strengths (120, 150, 180, and 210 V/mm) and pulse durations (15, 30, 45, and 60 μs). For chemical activation, oocytes were exposed to 5 μM ionomycin for 5 min followed by 2 mM 6-dimethylaminopurine (6-DMAP) or 5 μg/mL cycloheximide for 4 h or 6 h. After activation, 40 to 50 oocytes were cultured in 50-μL drops of NCSU23 medium supplemented with 4 mg/mL BSA at 39°C, and 5% CO2 in air. After 6 days of culture, blastocyst formation was observed and then numbers of blastocyst nuclei were counted after staining with Hoechst 33342. in vitro development rates and numbers of blastocyst nuclei by the field strengths were not significantly different among experimental groups (P > 0.05). However, development rates to the blastocyst stage of porcine oocytes exposed to 15 and 30 μ­s were 27.4 and 24.4%, respectively, which were significantly higher than that (12.5%) of 60 μs (P < 0.05). Mean numbers of blastocyst nuclei in 15- and 30-μs groups (38.6 ± 13.4 and 37.9 ± 11.4, respectively) were significantly higher than that (25.8 ± 10.5) of the 60-μs group (P < 0.05). Blastocyst development after optimal electrical pulse exposure was compared with that after different chemical treatments. Electrical stimulation induced 22.9% of blastocyst formation, which was significantly higher (P < 0.01) than those induced by the chemical stimulators (3.4 and 2.7%). Based on these results, changes of constituent proteins (cdc2 and ERK) of MPF and MAPK after artificial activation were analyzed by immunoblotting using anti-PSTAIRE monoclonal antibody and anti-MAP kinase polyclonal antibody. Activities of both cdc2 and ERK in pig oocytes were reduced 4 h after electrical stimulus, but were maintained at optimal levels after treatment with ionomycin + 6-DMAP. Our results indicate that an optimal single electrical pulse is effective on the inactivation of MPF and MAPK in porcine oocytes, eventually resulting in activation of porcine oocytes produced in vitro.


2007 ◽  
Vol 403 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Sandrine Pacquelet ◽  
Jennifer L. Johnson ◽  
Beverly A. Ellis ◽  
Agnieszka A. Brzezinska ◽  
William S. Lane ◽  
...  

Exposure of neutrophils to LPS (lipopolysaccharide) triggers their oxidative response. However, the relationship between the signalling downstream of TLR4 (Toll-like receptor 4) after LPS stimulation and the activation of the oxidase remains elusive. Phosphorylation of the cytosolic factor p47phox is essential for activation of the NADPH oxidase. In the present study, we examined the hypothesis that IRAK-4 (interleukin-1 receptor-associated kinase-4), the main regulatory kinase downstream of TLR4 activation, regulates the NADPH oxidase through phosphorylation of p47phox. We show that p47phox is a substrate for IRAK-4. Unlike PKC (protein kinase C), IRAK-4 phosphorylates p47phox not only at serine residues, but also at threonine residues. Target residues were identified by tandem MS, revealing a novel threonine-rich regulatory domain. We also show that p47phox is phosphorylated in granulocytes in response to LPS stimulation. LPS-dependent phosphorylation of p47phox was enhanced by the inhibition of p38 MAPK (mitogen-activated protein kinase), confirming that the kinase operates upstream of p38 MAPK. IRAK-4-phosphorylated p47phox activated the NADPH oxidase in a cell-free system, and IRAK-4 overexpression increased NADPH oxidase activity in response to LPS. We have shown that endogenous IRAK-4 interacts with p47phox and they co-localize at the plasma membrane after LPS stimulation, using immunoprecipitation assays and immunofluorescence microscopy respectively. IRAK-4 was activated in neutrophils in response to LPS stimulation. We found that Thr133, Ser288 and Thr356, targets for IRAK-4 phosphorylation in vitro, are also phosphorylated in endogenous p47phox after LPS stimulation. We conclude that IRAK-4 phosphorylates p47phox and regulates NADPH oxidase activation after LPS stimulation.


1993 ◽  
Vol 13 (9) ◽  
pp. 5659-5669 ◽  
Author(s):  
M Tyers ◽  
B Futcher

In the yeast Saccharomyces cerevisiae, the Cdc28 protein kinase controls commitment to cell division at Start, but no biologically relevant G1-phase substrates have been identified. We have studied the kinase complexes formed between Cdc28 and each of the G1 cyclins Cln1, Cln2, and Cln3. Each complex has a specific array of coprecipitated in vitro substrates. We identify one of these as Far1, a protein required for pheromone-induced arrest at Start. Treatment with alpha-factor induces a preferential association and/or phosphorylation of Far1 by the Cln1, Cln2, and Cln3 kinase complexes. This induced interaction depends upon the Fus3 protein kinase, a mitogen-activated protein kinase homolog that functions near the bottom of the alpha-factor signal transduction pathway. Thus, we trace a path through which a mitogen-activated protein kinase regulates a Cdc2 kinase.


Sign in / Sign up

Export Citation Format

Share Document