Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis

2013 ◽  
Vol 75 (3) ◽  
pp. 364-376 ◽  
Author(s):  
YongSig Kim ◽  
Sunchung Park ◽  
Sarah J. Gilmour ◽  
Michael F. Thomashow
2019 ◽  
Vol 150 ◽  
pp. 42-51 ◽  
Author(s):  
Irene Romero ◽  
Estibaliz Alegria-Carrasco ◽  
Alfonso Gonzalez de Pradena ◽  
Maria Vazquez-Hernandez ◽  
M. Isabel Escribano ◽  
...  

2013 ◽  
Vol 61 (2) ◽  
pp. 161-172 ◽  
Author(s):  
M. Pál ◽  
O. Gondor ◽  
T. Janda

Low temperature is one of the most important limiting factors for plant growth throughout the world. Exposure to low temperature may cause various phenotypic and physiological symptoms, and may result in oxidative stress, leading to loss of membrane integrity and to the impairment of photosynthesis and general metabolic processes. Salicylic acid (SA), a phenolic compound produced by a wide range of plant species, may participate in many physiological and metabolic reactions in plants. It has been shown that exogenous SA may provide protection against low temperature injury in various plant species, while various stress factors may also modify the synthesis and metabolism of SA. In the present review, recent results on the effects of SA and related compounds in processes leading to acclimation to low temperatures will be discussed.


HortScience ◽  
2018 ◽  
Vol 53 (6) ◽  
pp. 859-864
Author(s):  
Yang Yang ◽  
Runfang Zhang ◽  
Pingsheng Leng ◽  
Zenghui Hu ◽  
Man Shen

The evergreen Ligustrum lucidum (glossy privet) suffers from freezing injury in northern China, where there are short growing seasons and early fall frost events. To investigate the influence of exogenous salicylic acid (SA) application on the natural cold acclimation of glossy privet, physiological and biochemical changes in glossy privet seedlings subjected to SA treatments at four concentrations (0, 150, 250, and 350 mg·L−1) were evaluated from Sept. to Dec. 2016. The optimum application concentrations were between 250 and 350 mg·L−1, which led to better freezing tolerance during natural cold acclimation. The improved freezing tolerance under exogenous SA application was associated with the accumulation of chlorophyll, proline, soluble protein, and soluble sugar, and the regulations of gibberellic acid (GA) and abscisic acid (ABA). Salicylic acid treatments started a cascade of steps for advancing the cold acclimation process of glossy privet. We suggest that exogenous SA application may be used on glossy privet grown in northern China.


1977 ◽  
Vol 69 (1) ◽  
pp. 13-21
Author(s):  
DENNIS J. MURPHY

1. A time course of the changes in blood Ca2+ and freezing tolerance of Modiolus demissus (Dillwyn) demonstrated that increases in freezing tolerance parallel increases in blood Ca2+. The increases in freezing tolerance occurred rapidly, suggesting that Ca2+ affects freezing tolerance directly by its presence in the blood. 2. The presence of La3+ reduced the freezing tolerance of isolated foot muscle. Thus, Ca2+ appears to increase freezing tolerance directly by binding to cell membranes. 3. The loss of the contractile response of freeze-thawed foot muscle to Ach, KCl and caffeine and the continued response to CaCl2 suggested that cell membranes are the primary sites of freezing injury. 4. The increase in blood Ca2+ following low-temperature acclimation accounted for only 40% of the total change in freezing tolerance. Therefore, other mechanisms responsible for increasing the freezing tolerance of M. demissus following low temperature acclimation also exist.


1977 ◽  
Vol 69 (1) ◽  
pp. 1-12
Author(s):  
DENNIS J. MURPHY

1. A physiological mechanism responsible for increasing the freezing tolerance of the bivalve Modiolus demissus (Dillwyn) following low-temperature acclimation was demonstrated. 2. The rates of oxygen consumption of M. demissus acclimated to temperatures between 0 and 24 °C were presented as an Arrhenius plot. A change in slope occurred at 10 °C, suggesting that temperature alone was not responsible for the increased decline in the rate of oxygen consumption below 10 °C. 3. Low-temperature acclimation had no effect on blood Na+ or K+ concentrations but did reduce the concentration of blood Mg2+ and, in addition, resulted in the accumulation of end-products characteristic of anaerobic metabolism - tissue alanine and proline, and blood Ca2+. Furthermore, maintenance of M. demissus under anaerobic conditions increased freezing tolerance. 4. Taken together, these data indicate that the increased freezing tolerance of M. demissus acclimated to low temperatures involves a conversion to anaerobic metabolism. 5. The increase in blood Ca2+ following low-temperature acclimation was associated with the increased freezing tolerance. Finally, Mg2+ simulated the effect of Ca2+ on freezing tolerance, but was only 20% as effective. 6. These results suggest that a Ca2+-dependent mechanism responsible for increasing the freezing tolerance of M. demissus exists, and that the increase in blood Ca2+ is due to a conversion to anaerobic metabolism.


2019 ◽  
Vol 60 (12) ◽  
pp. 2744-2757 ◽  
Author(s):  
Sung Mi Cho ◽  
Sanghee Kim ◽  
Hojin Cho ◽  
Hyoungseok Lee ◽  
Jun Hyuck Lee ◽  
...  

Abstract Microalgal ice-binding proteins (IBPs) in the polar region are poorly understood at the genome-wide level, although they are important for cold adaptation. Through the transcriptome study with the Arctic green alga Chloromonas sp. KNF0032, we identified six Chloromonas IBP genes (CmIBPs), homologous with the previously reported IBPs from Antarctic snow alga CCMP681 and Antarctic Chloromonas sp. They were organized with multiple exon/intron structures and low-temperature-responsive cis-elements in their promoters and abundantly expressed at low temperature. The biological functions of three representative CmIBPs (CmIBP1, CmIBP2 and CmIBP3) were tested using in vitro analysis and transgenic plant system. CmIBP1 had the most effective ice recrystallization inhibition (IRI) activities in both in vitro and transgenic plants, and CmIBP2 and CmIBP3 had followed. All transgenic plants grown under nonacclimated condition were freezing tolerant, and especially 35S::CmIBP1 plants were most effective. After cold acclimation, only 35S::CmIBP2 plants showed slightly increased freezing tolerance. Structurally, the CmIBPs were predicted to have β-solenoid forms with parallel β-sheets and repeated TXT motifs. The repeated TXT structure of CmIBPs appears similar to the AidA domain-containing adhesin-like proteins from methanogens. We have shown that the AidA domain has IRI activity as CmIBPs and phylogenetic analysis also supported that the AidA domains are monophyletic with ice-binding domain of CmIBPs, and these results suggest that CmIBPs are a type of modified adhesins.


Planta ◽  
2017 ◽  
Vol 247 (1) ◽  
pp. 181-199 ◽  
Author(s):  
Shayan Sarkar ◽  
Abhimanyu Das ◽  
Prashant Khandagale ◽  
Indu B. Maiti ◽  
Sudip Chattopadhyay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document