No‐tillage increases nitrogen scavenging by fallow weeds in a double‐season rice cropping system in China

2018 ◽  
Vol 18 (3) ◽  
pp. 105-109 ◽  
Author(s):  
Min Huang ◽  
Peng Jiang ◽  
Xuefeng Zhou ◽  
Yingbin Zou
2005 ◽  
Vol 8 (4) ◽  
pp. 368-374 ◽  
Author(s):  
Morio Iijima ◽  
Tomoko Asai ◽  
Walter Zegada-Lizarazu ◽  
Yasunori Nakajima ◽  
Yukihiro Hamada

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peng Jiang ◽  
Fuxian Xu ◽  
Lin Zhang ◽  
Mao Liu ◽  
Hong Xiong ◽  
...  

AbstractSimplified cultivation methods for rice production offer considerable social, economic, and environmental benefits. However, limited information is available on yield components of rice grown using simplified cultivation methods in a rice-ratoon rice cropping system. A field experiment using two hybrid and two inbred rice cultivars was conducted to compare four cultivation methods (conventional tillage and transplanting, CTTP; conventional tillage and direct seeding, CTDS; no-tillage and transplanting, NTTP; no-tillage and direct seeding, NTDS) in a rice-ratoon rice system from 2017 to 2020. Main season yields for CTDS and NTDS were higher than for CTTP by 6.1% and 2.8%, respectively; whereas ratoon season yields for CTDS and NTDS were equal to or higher than for CTTP. Annual grain yields for CTDS and NTDS were higher than for CTTP by 4.4% and 3.2%, respectively. The higher CTDS and NTDS yields were associated with higher panicle numbers per m2 and biomass production. Rice hybrids had higher yields than inbred cultivars by 15.8–19.3% for main season and by 15.6–19.4% for ratoon season, which was attributed to long growth duration, high grain weight and biomass production. Our results suggest that CTTP can be replaced by CTDS and NTDS to maintain high grain yields and save labor costs. Developing cultivars with high grain weight could be a feasible approach to achieve high rice yields in the rice-ratoon rice cropping system in southwest China.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 841 ◽  
Author(s):  
Costanza Ceccanti ◽  
Marco Landi ◽  
Daniele Antichi ◽  
Lucia Guidi ◽  
Luigi Manfrini ◽  
...  

The sustainability of current farming systems has been questioned in the last decades, especially in terms of the environmental impact and mitigation of global warming. Also, the organic sector, which is supposed to impact less on the environment than other more intensive systems, is looking for innovative solutions to improve its environmental sustainability. Promisingly, the integration of organic management practices with conservation agriculture techniques may help to increase environmental sustainability of food production. However, little is known about the possible impact of conservation agriculture on the content of bioactive compounds in cash crops. For this reason, a two-year rotation experiment used 7 cash crops (4 leafy vegetables and 3 fruit crops) to compare integrated (INT), organic farming (ORG), and organic no-tillage (ORG+) systems to evaluate the possible influence of cropping systems on the nutritional/nutraceutical values of the obtained fruits and leafy vegetables. The results pointed out specific responses based on the species as well as the year of cultivation. However, cultivation with the ORG+ cropping system resulted in effective obtainment of fruits and vegetables with higher levels of bioactive compounds in several cases (11 out 16 observations). The ORG+ cropping system results are particularly promising for leafy vegetable cultivation, especially when ORG+ is carried out on a multi-year basis. Aware that the obtained data should be consolidated with longer-term experiments, we conclude that this dataset may represent a good starting point to support conservation agriculture systems as a possible sustainable strategy to obtain products with higher levels of bioactive compounds.


2014 ◽  
Vol 2 (3) ◽  
pp. 328-335
Author(s):  
Saugat Dahal ◽  
Tika Bahadur Karki ◽  
Lal Prasad Amgain ◽  
Birendra Kumar Bhattachan

With the aim of developing crop management technologies that reduce the yield gap of maize (Zea mays L.) in Nepal, a study was carried-out to determine whether the grain yield of maize could be manipulated through tillage, residue, and nutrient and weed management practices. The effect of tillage (conventional and no tillage), residue (residue retained and residue removed), fertilizer (recommended doses of fertilizer and farmers’ doses of fertilizer) and weed management practices (herbicide use and manual weeding) on phenology and grain yield of maize were investigated under maize-rice cropping system in Rampur, Nepal during 2013. The experimental results revealed that no tillage had significant effect on grain yield (6.64 Mg ha-1) and phenological parameters like days to silking, physiological maturity and seed fill duration. Similarly, residue retained treatment had significant effect on grain yield (7.02 Mg ha-1) and phenological parameters. Research dose of fertilizer had significant effect on phenological parameters and grain yield (8.42 Mg ha-1). However, weed management factor did not influence significantly on grain yield and phenological parameters. The grain yield increased in no tillage by 23.19% over conventional tillage, residue retained by 39.84% over residue removed, recommended doses of fertilizer by 132.60% over farmer dose of fertilizer. Thus, no tillage, residue retention, recommended doses of fertilizer and use of herbicide for weed management can be alternative technologies for sustainable higher grain yield. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.11001Int J Appl Sci Biotechnol, Vol. 2(3): 328-335  


2008 ◽  
Vol 100 (6) ◽  
pp. 1787-1787 ◽  
Author(s):  
Ademir Calegari ◽  
W. L. Hargrove ◽  
Danilo Dos Santos Rheinheimer ◽  
Ricardo Ralisch ◽  
Daniel Tessier ◽  
...  

Author(s):  
Upendra Sainju ◽  
Rajan Ghimire ◽  
Gautam Pradhan

Studies on N balance due to N inputs and outputs and soil N retention to measure cropping system performance and environmental sustainability are limited due to the complexity of measurements of some parameters. We measured N balance based on N inputs and outputs and soil N retention under dryland agroecosystem affected by cropping system and N fertilization from 2007 to 2011 in the northern Great Plains, USA. Cropping systems were conventional tillage barley (Hordeum vulgaris L.)-fallow (CTB-F), no-tillage barley-fallow (NTB-F), no-tillage barley-pea (Pisum sativum L.) (NTB-P), and no-tillage continuous barley (NTCB). Nitrogen rates to barley were 0, 40, 80, and 120 kg N ha-1. Total N input due to N fertilization, pea N fixation, soil N mineralization, atmospheric N deposition, nonsymbiotic N fixation, and crop seed N and total N output due to grain N removal, denitrification, volatilization, N leaching, gaseous N (NOx) emissions, surface runoff, and plant senescence were 28 to 37% greater with NTB-P and NTCB than CTB-F and NTB-F. Total N input and output also increased with increased N rate. Nitrogen sequestration rate at 0 to 10 cm averaged 22 kg N ha-1 yr-1 for all treatments. Nitrogen deficit ranged from 5 to 16 kg N ha-1 yr-1, with greater deficits for CTB-F and NTB-P and higher N rates. Because of increased grain N removal and reduced N loss to the environment and N fertilizer requirement, NTB-P with 40 kg N ha-1 can enhance agronomic performance and environmental sustainability while reducing N inputs compared to other management practices.


2017 ◽  
Vol 165 ◽  
pp. 325-335 ◽  
Author(s):  
Jeffrey P. Mitchell ◽  
Anil Shrestha ◽  
Konrad Mathesius ◽  
Kate M. Scow ◽  
Randal J. Southard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document