scholarly journals ONSHORE-OFFSHORE FACIES CHANGE OF NGRAYONG SANDSTONE IN MADURA AREAINDONESIA

2018 ◽  
Vol 8 (2) ◽  
pp. 1-15
Author(s):  
Sugeng Sapto Surjono ◽  
Mustafid Gunawan

Ngrayong sandstone composes a siliciclastic reservoir that produces oil for more than a century in North East Java Basin of Indonesia. Clean sand facies makes the best reservoir in western part of the basin, onshore East Java Island. Meanwhile, sand quality decreases eastward to Madura Island. In Madura, rock gradually changes to be more calcareous and shaly, due to the change of depositional environment. In offshore of Madura, the depositional environment is still questionable. This study is aimed to reveal differences between onshore and offshore facies of Ngrayong sandstone in Madura as their distribution is not well known and oil potential of Madura Strait is not well identified. Study methods consisted of geological field work, well correlation, and petrophysical analysis from several well data. The results show that Ngrayong sandstone was deposited during Middle Miocene, composed by interbedding of thickly bedded sandstone and alternating thinly bedded sandstoneshale. The succession is commonly intercalated by mudstone and thinly bedded limestone. At Madura Island, Ngrayong sandstone overlies the Early-Middle Miocene Tawun Formation, which both represent the Megasequence (MS) 3 interval. Due to regional subsidence and transgression during Late Miocene, Ngrayong sandstone and other equivalent rocks were overlain by monotonous mudstone and calcareous sandstone of Wonocolo Formation. The Ngrayong sandstone is evenly distributed in whole surface area of Madura Island and it spreads further 25-50 Km to the south and 100-125 Km to eastern part of offshore Madura Strait. Sandstone distribution is roughly depleted from the gross thickness hundreds of meters in northern part to only few centimeters in southeast part of study area. The facies changes to be more calcareous to the east, while the southward facies is shaly due to a deeper depositional environment. Despite of facies changing into shales or carbonate facies, Ngrayong sandstone potential in offshore Madura Strait needs to be considered as upside potential due to its distribution is wider than initial estimation, and its petrology and petrophysic data support it as a clastic reservoir.

2021 ◽  
Author(s):  
Catherine Breislin ◽  
Laura Galluccio ◽  
Kate Al Tameemi ◽  
Riaz Khan ◽  
Atef Abdelaal

Abstract Understanding reservoir architecture is key to comprehend the distribution of reservoir quality when evaluating a field's prospectivity. Renewed interest in the tight, gas-rich Middle Miocene anhydrite intervals (Anh-1, Anh-2, Anh-3, Anh-4 and Anh-6) by ADNOC has given new impetus to improving its reservoir characterisation. In this context, this study provides valuable new insights in geological knowledge at the field scale within a formation with limited existing studies. From a sedimentological point of view, the anhydrite layers of the Miocene Formation, Anh-1, Anh-2, Anh-3, Anh-4 and Anh-6 (which comprise three stacked sequences: Bur1, Bur2 and Bur3; Hardenbol et al., 1998), have comparable depositional organisation throughout the study area. Bur1 and Bur2 are characterised by an upward transition from intertidal-dominated deposits to low-energy inner ramp-dominated sedimentation displaying reasonably consistent thickness across the area. Bur3 deposits imply an initial upward deepening from an argillaceous intertidal-dominated to an argillaceous subtidal-dominated setting, followed by an upward shallowing into intertidal and supratidal sabkha-dominated environments. This Bur3 cycle thickens towards the south-east due to a possible deepening, resulting in the subtle increase in thickness of the subtidal and intertidal deposits occurring around the maximum-flooding surface. The interbedded relationship between the thin limestone and anhydrite layers within the intertidal and proximal inner ramp deposits impart strong permeability anisotropy, with the anhydrite acting as significant baffles to vertical fluid flow. A qualitative reservoir quality analysis, combining core sedimentology data from 10 wells, 331 CCA data points, 58 thin-sections and 10 SEM samples has identified that reservoir layers Anh-4 and Anh-6 contain the best porosity and permeability values, with the carbonate facies of the argillaceous-prone intertidal and distal inner ramp deposits hosting the best reservoir potential. Within these facies, the pore systems within the carbonate facies are impacted by varying degrees of dolomitisation and dissolution which enhance the pore system, and cementation (anhydrite and calcite), which degrade the pore system. The combination of these diagenetic phases results in the wide spread of porosity and permeability data observed. The integration of both the sedimentological features and diagenetic overprint of the Middle Miocene anhydrite intervals shows the fundamental role played by the depositional environment in its reservoir architecture. This study has revealed the carbonate-dominated depositional environment groups within the anhydrite stratigraphic layers likely host both the best storage capacity and flow potential. Within these carbonate-dominated layers, the thicker, homogenous carbonate deposits would be more conducive to vertical and lateral flow than thinner interbedded carbonates and anhydrites, which may present as baffles or barriers to vertical flow and create significant permeability anisotropy.


2021 ◽  
Vol 69 (Suppl.1) ◽  
pp. 35-50
Author(s):  
Claudia-J. Del Río ◽  
Sergio Martínez

Introduction: Scutelliforms were diverse and widespread in shallow marine environments during Neogene times in South America. Nevertheless, they have almost never been used as biostratigraphic tools. Objective: To provide a refined stratigraphic frame useful for calibrating temporal dimensions of scutelliform diversity from Argentina and Uruguay and its correlation with the molluscan assemblages previously proposed. Methods: A detailed survey of their geographic and stratigraphic provenance was carried out. We revised both the bibliography and collections (institutional and from our own field work). Results: The group is represented by 14 species belonging to six genera, and four assemblages were identified. Numerical dates of the Neogene marine rocks obtained recently allowed their placement in a chronological scheme: “Iheringiella” sp. A is restricted to the late Oligocene, the genera Camachoaster and “Eoscutella” and the species Monophoraster telfordi to the early Miocene, Abertella gualichensis and Abertella miskellyi to the middle Miocene, and Monophoraster duboisi, Amplaster coloniensis and Amplaster ellipticus to the late Miocene. Non-lunulate scutelliforms are not restricted to the late Oligocene as previously supposed. The oldest occurrence of the genus Monophoraster corresponds to the early Miocene, and along with Iheringiella are long-living taxa that embrace the 25.3 Ma-18.1 Ma (Iheringiella patagonensis) and approximately 15 Ma-6.48 Ma (Monophoraster darwini) intervals. The presence of Iheringiella in the early Miocene of northeastern Patagonia is corroborated, reaching there its northernmost distribution. Monophoraster darwini has a temporal range from the late Miocene (where it was previously thought to be restricted) back to the middle Miocene, since this is the species yielded in the well-known and discussed “Monophoraster and Venericor Beds”. Conclusions: The Paleogene-Neogene scutelliforms of Argentina and Uruguay range from the late Oligocene to the late Miocene. There is a good correspondence among the numerical ages, molluscan biozones and scutelliform assemblages.


Author(s):  
N., S., Irsani

The North East Java Basin has become one of the most promising basins in Indonesia. Over 150 million barrels of oil have been extracted from the Rembang Zone in the North East Java Basin. The Sukolilo outcrop, located in Sukolilo, Bancar, Tuban Regency, East Java, represents all the components of an exposed Middle Miocene petroleum system. The objective of this study is to present an excellent analogue for the depositional environment and petroleum system of the Middle Miocene formation of the Rembang Zone that can be expected in similar subsurface settings and as a tool for outcrop preservation with modelling using photogrammetry. Data consists of measured section, photogrammetry data, petrographic analysis, TOC content measurement and Rock-Eval Pyrolysis. Observed formation at this outcrop includes Ngrayong, Bulu, and Wonocolo Formation. The facies distributed in this outcrop consist of claystone-carbonaceous shale bedded, cross-bedded quartz sandstone, foraminiferal limestone and calcareous siltstone intercalated calcareous sandstone. Based on depositional environment analysis, the depositional environment changes from Lagoon – Tidal Flat – Shallow Marine – Shelf. The result of petrographic analysis shows that quartz sandstone porosity from the Ngrayong Formation can be identified as reservoir rock. Seal rock potential is shown by carbonate minerals diagenesis of the foraminiferal limestone sample. Source rock potential which is identified using TOC content and Rock-Eval Pyrolysis, reveals that the sample tends to be gas prone (kerogen type III) and has low thermal maturity (immature). Ductile deformation (conical anticline) and brittle deformation (normal fault) is predicted to be the migration path for this petroleum system.


2021 ◽  
Vol 151 (3) ◽  
pp. 267-274
Author(s):  
Krešimir Krizmanić ◽  
Krisztina Sebe ◽  
Imre Magyar

Dinoflagellate-cyst based biostratigraphy is an important tool in the stratigraphical subdivision and correlation of the Neogene Lake Pannon deposits. A total of 66 palynological samples were investigated from the Pannonian (upper Miocene) marl succession exposed in the Pécs-Danitzpuszta sand pit in order to evaluate the biostratigraphical assignment and constrain the age of the strata. Earlier attempts to recover dinoflagellate cysts from this important reference section had failed. In our material, six samples contained well-preserved palynomorphs. One sample from the lower part of the succession (D25) contained a probably reworked middle Miocene assemblage. Samples from the middle segment of the succession (D3, D2, D1) indicate the Pontiadinium pecsvaradensis Zone (ca. 10.8 to 10.6 Ma). Samples from the top of the marl (D219, D221) did not give additional stratigraphic information (P. pecsvaradensis Zone or younger). The palynofacies of samples D3 to D221 indicates a relatively distal, calm, occasionally oxygen-deficient, probably deep depositional environment.


2021 ◽  
Author(s):  
Dengyi Xiao ◽  
Mingsheng Lv ◽  
Guangcheng Hu ◽  
Wenyuan Tian ◽  
Li Wang ◽  
...  

Abstract In Western UAE, the Middle Cretaceous petroleum system is composed of Shilaif source, Mishrif/Tuwayil reservoir and Tuwayil/Ruwaydha seal. Oil is discovered in Tuwayil sandstone in DH and NN fields. Well correlation of Tuwayil siliciclastic interval shows high heterogeneity and rapid lithology varies. Currently, a few general studies about Tuwayil sandstone was published. However, detailed sedimentary facies, reservoir characteristics and accumulation mechanism about Tuwayil are ambiguous. Limitation on these aspects prohibits enlarging exploration activity of Tuwayil and makes barriers to deepen understanding of the whole K2 PS. To enhance understanding on Tuwayil formation, well data in DH, NN fields and adjacent area was integrated. Dedicated single well analysis, well correlation and petrophysics study were carried out. Cores were observed and laboratory outcomes including TS, SEM, RCA, MICP, XRD were adopted into this study. Furthermore, we have also utilized 2D&3D seismic to illustrate the spatial distribution of Tuwayil siliciclastic setting and interior sediment pattern. Basically, the Tuwayil sand-shale interval represents the infilling of Mishrif/Shilaif intrashelf basin and mainly deposits in the tidal flat-delta facies. The epi-continental clast is sourced from the Arabian shield and transferred from west to east. In Western UAE, the Tuwayil depocenter located in DH field, where 4-5 sand layers deposit with net pay of 30-40ft. In NN field, only one sand layer develops with net pay about 4-6ft. Through deposition cycles identification and seismic reflection observation, two sand groups could be recognized in this interval. The lower group is constrained in the depocenter and influenced by the paleo-geomorphology background. The upper group overpassed the former set and pinched out around north of NN. The Mishrif/Shilaif slope area is another potential belt to enlarge Tuwayil discovery, where stratigraphic onlap could be observed and it probably represents the sand pinch-out in lower sand group. For the K2 PS, previous study believed the shale between Tuwayil sand and Mishrif separate these two reservoirs and works as cap rock for Mishrif grainstone. This study suggests that this shale is too thin and not continuous enough to hold the hydrocarbon in Mishrif. On that note, Tuwayil sand and Mishrif belong to the same petroleum system in NN and may have the same OWC. In the NN field, it is quite crucial to consider the extension of Tuwayil sand during evaluating the stratigraphic prospect of Mishrif because the hydrocarbon is mostly likely charged Tuwayil sand first and then gets into underlain Mishrif. This study provides updates and understandings on sedimentary facies, depositional pattern, hydrocarbon accumulation mechanism, reservoir extension and potential identification of Tuwayil formation, which has inspiring implications for the whole K2 PS and could also de-risk the further exploration activity in Western UAE.


Author(s):  
Zhilin He ◽  
Zhongshi Zhang ◽  
Zhengtang Guo ◽  
Christopher R. Scotese ◽  
Chenglong Deng

1988 ◽  
Vol 62 (3) ◽  
pp. 463-467 ◽  
Author(s):  
Villarroel A. Carlos ◽  
Larry G. Marshall

A new argyrolagoid marsupial, Hondalagus altiplanensis n. gen., n. sp., from the middle Miocene (Santacrucian–Friasian) age locality of Quebrada Honda in southernmost Bolivia represents the smallest and most specialized member of the family Argyrolagidae known. The lower molars are hypselodont and lack vertical grooves labially and lingually, and M4 is greatly reduced relative to M3. In overall size and structure, H. altiplanensis compares best with Microtragulus catamarcensis (Kraglievich, 1931) from rocks of late Miocene (Huayquerian) age in northwest Argentina. Hondalagus altiplanensis demonstrates that the adaptive radiation of argyrolagoids was much greater than previously envisioned, and that generic differentiation of known taxa occurred no later than early–middle Miocene time in South America.


1974 ◽  
Vol 65 ◽  
pp. 18-23
Author(s):  
J.S Peel ◽  
P.R Dawes ◽  
J.C Troelsen

The north-east 'corner' of Greenland is geologically probably the least known region in North Greenland. Various expeditions have visited the coastal parts but geological detail, particularly faunal information, has remained surprisingly scarce. Initial field work by Koch (1923, 1925) and Troelsen (1949a, b, 1950) showed that a Precambrian to Silurian section - unfolded in the south, folded in the north - was unconformably overlain by a Carboniferous to Tertiary section, now referred to as the Wandel Sea basin (Dawes & Soper, 1973).


2019 ◽  
Vol 27 (6) ◽  
pp. 103-123
Author(s):  
O. B. Kuzmina ◽  
I. V. Khazina ◽  
P. V. Smirnov ◽  
A. O. Konstantinov ◽  
A. R. Agatova

For the first time some outcrops of the Upper Miocene Ishim Formation on the south of Tyumen Area near Pyatkovo, Masali and Bigila villages are studied by palynological method in detail. A series of mineralogical analyzes of these sediments and radiocarbon analysis of the Quaternary sediments overlying the Ishim Formation are done. Four palynocomplexes (PC) are established in the Ishim Formation: PC1 with Botryococcus; PC2 with Botryococcus, Sigmopollis; PC3 with Alnus, Polypodiaceae, Botryococcus, Sigmopollis; PC4 with Betula, Alnus, Corylus. The layers with PC1, PC2 и PC3 are traced in two outcrops near Masali and Bigila Villages. PC4 is revealed from the sands and aleuropelits of the outcrop near Pyatkovo Village, it is characterized by a significant content of diverse pollen of temperate termophylic broad-leafed taxa and by the presence of rare typical Miocene elements (Таxodiaceae, Nyssa, Tsuga). The PC3 and PC4 are compared with the complexes well known from the Neogene sediments of Western Siberia. PC5 with Betula, Herbae, Fungi is revealed from the bedded silts overlying the Ishim Formation in Masali outcrop. Previously, these sediments were attributed to the Late Miocene Pavlodar Formation. The composition and the structure of PC5 allowed making an assumption about Quaternary age of the enclosing sediments. Radiocarbon analysis of the organic substance from the silts showed, that these sediments were accumulated in the Late Pleistocene (Sartan Ice Age). For the first time the information about microphytoplankton (Botryococcus, Pediastrum, Zygnemataceae, Sigmopollis) and other nonpollen palynomorphs, contained in Ishim Formation (Upper Miocene) and in Pleistocene sediments, is given. On palynological data, some stages of development of the Late Miocene Ishim Basin and the type of vegetation surrounding this basin are considered. The depositional environment of Pleistocene sediments (Masali outcrop) is reconstructed.


Sign in / Sign up

Export Citation Format

Share Document