Rational Proportion For Mixture Of Foamed Concrete Design

Author(s):  
Fahrizal Zulkarnain ◽  
Mahyuddin Ramli

Kajian ini membentangkan sebahagian hasil kerja makmal untuk reka bentuk konkrit ringan berbusa dengan Protein Agent 1 sebagai busa, silica fume (SF) sebagai bahan tambah dan superplasticizer (SP). Konkrit ringan berbusa terkawal dicampurkan dengan kandungan simen Portland biasa (OPC) dan silica fume, campuran tersebut pada kadar 10 peratus, dari berat simen sebagai bahan tambah akan disediakan. Silica fume digunakan untuk meningkatkan kekuatan mampat dan juga menjimatkan kos. Konkrit berbusa diawetkan pada kisaran 70 peratus kelembapan dan 28 darjah kandungan udara. Sifat mekanikal daripada struktur konkrit ringan berbusa juga didedahkan. Dapatan kajian menunjukkan bahawa serapan air dalam kajian besar adanya. Walaupun demikian, silica fume perlu digunakan untuk menghasilkan struktur ringan berbusa yang murah dan mesra alam, dengan kekuatan mampat dan kawalan struktur ringan berbusa menggunakan simen Portland biasa (OPC) sahaja. Kata kunci: Campuran konkrit berbusa; ketumpatan mortar; ketumpatan sebenar; sifat mekanikal; kekuatan mampat This paper presents part of the results of laboratory work to design a lightweight foamed concrete made with Protein Agent 1 as foam, silica fume (SF) mineral admixture and superplasticizer (SP). Control of foamed concrete mixture made with foam containing only Ordinary Portland Cement (OPC) and SF, lightweight foam concrete mixture containing 10% of SF as a replacement for the cement in weight basis was prepared. SF is used to increase the compressive strength and for economical concerns. The foam concrete was cured at 70% relative humidity and ± 28°C temperature. The mechanical properties of a lightweight foam concrete with OPC are presented. The findings indicate that water absorption of aggregate is large in this case. However, the use of SF seems to be necessary for the production of cheaper and environmentfriendly structural foamed concrete with compressive strength and control structural foamed concrete containing only OPC. Key words: Foam concrete mixed; mortar density; actual density; mechanical properties; compressive strength

2018 ◽  
Vol 7 (3.10) ◽  
pp. 66
Author(s):  
T Subramani ◽  
R Amul

Foam concrete is a form of aerated lightweight concrete. Foamed concrete has emerged as most industrial fabric in Production Company. Foam concrete is produced while pre-fashioned foam is brought to slurry, the characteristic of froth is to create an air voids in cement–primarily based absolutely slurry. Foam is generated one by one via using foam generator; the foaming agent is diluted with water and aerated to create the froth. The cement paste or slurry set throughout the foam bubbles and whilst the froth being to degenerate, the paste has enough power to keep its form around the air voids. Consequently, this study investigates bodily and mechanical residences of foamed concrete. Ultimately comparative analyses had been finished to decide the relationships the various numerous mechanical homes parameters of the foamed concrete, especially the compressive strength, flexural electricity, splitting tensile electricity. The specimen analysed by means of the usage of the use of e- tab software program.  


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Noridah Mohamad ◽  
A. I. Khalil ◽  
A. A. Abdul Samad ◽  
W. I. Goh

This paper presents the structural behaviour of precast lightweight foam concrete sandwich panel (PFLP) under flexure, studied experimentally and theoretically. Four (4) full scale specimens with a double shear steel connector of 6 mm diameter and steel reinforcement of 9 mm diameter were cast and tested. The panel’s structural behavior was studied in the context of its ultimate flexure load, crack pattern, load-deflection profile, and efficiency of shear connectors. Results showed that the ultimate flexure load obtained from the experiment is influenced by the panel’s compressive strength and thickness. The crack pattern recorded in each panel showed the emergence of initial cracks at the midspan which later spread toward the left and right zones of the slab. The theoretical ultimate load for fully composite and noncomposite panels was obtained from the classical equations. All panel specimens were found to behave in a partially composite manner. Panels PLFP-3 and PLFP-4 with higher compressive strength and total thickness managed to obtain a higher degree of compositeness which is 30 and 32.6 percent, respectively.


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


2019 ◽  
Vol 974 ◽  
pp. 125-130 ◽  
Author(s):  
Natalia V. Chernyisheva ◽  
Svetlana V. Shatalova ◽  
Maria Yu. Drebezgova ◽  
Evgeniy N. Lesnichenko

The article discusses the possibility of obtaining the effective thermal insulating and constructive foamed concrete on a composite gypsum binder. The composition was selected, the stepwise loading scheme of the foam concrete mixture components was proposed, the properties and microstructure of cellular concrete based on a composite gypsum binder with mineral addition of finely-dispersed concrete scrap were studied.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1821 ◽  
Author(s):  
Robert Bušić ◽  
Mirta Benšić ◽  
Ivana Miličević ◽  
Kristina Strukar

The paper aims to investigate the influence of waste tire rubber and silica fume on the fresh and hardened properties of self-compacting concrete (SCC) and to design multivariate regression models for the prediction of the mechanical properties of self-compacting rubberized concrete (SCRC). For this purpose, 21 concrete mixtures were designed. Crumb rubber derived from end-of-life tires (grain size 0.5–3.5 mm) was replaced fine aggregate by 0%, 5%, 10%, 15%, 20%, 25%, and 30% of total aggregate volume. Silica fume was replaced cement by 0%, 5%, and 10% of the total cement mass. The optimal replacement level of both materials was investigated in relation to the values of the fresh properties and mechanical properties of self-compacting concrete. Tests on fresh and hardened self-compacting concrete were performed according to the relevant European standards. Furthermore, models for predicting the values of the compressive strength, modulus of elasticity, and flexural strength of SCRC were designed and verified with the experimental results of 12 other studies. According to the obtained results, mixtures with up to 15% of recycled rubber and 5% of silica fume, with 28 days compressive strength above 30 MPa, were found to be optimal mixtures for the potential future investigation of reinforced self-compacting rubberized concrete structural elements.


2010 ◽  
Vol 2 (6) ◽  
pp. 50-55
Author(s):  
Marija Vaičienė ◽  
Jurgita Malaiškienė

Binder material is the most expensive raw component of concrete; thus, scientists are looking for cheaper substitute materials. This paper shows that when manufacturing, a part of the binder material of expanded-clay lightweight concrete can be replaced with active filler. The conducted studies show that technogenic – catalyst waste could act as similar filler. The study also includes the dependence of the physical and mechanical properties of expanded-clay lightweight concrete on the concrete mixture and the chemical composition of the samples obtained. Different formation and composition mixtures of expanded-clay lightweight concrete were chosen to determine the properties of physical-mechanical properties such as density, water absorption and compressive strength.


Author(s):  
Hyuk Lee ◽  
Vanissorn Vimonsatit

This paper presents the mechanical properties of fly ash-based alkali-activated cement (AAC). A statistical analysis method was used to determine the effect of mix proportion parameters on the dry density and compressive strength of fly ash-based AAC pastes and mortars. For that purpose, sample mixtures were designed according to Taguchi’s experimental design method, i.e., in a L9 orthogonal array. Four factors were selected: “silica fume content” (SF), “sand to solid ratio” (s/c), “liquid to solid ratio” (l/s), and “superplasticiser content” (SP). The experimental results were analysed by using signal to noise for quality control of each mixture, and analysis of variance (ANOVA) was used to determine the significant effect on the compressive strength of fly ash-based AAC. Furthermore, a regression-analysis method was used to predict the compressive strength according to the variation of the four factors. Results indicated that silica fume is the most influencing parameter on compressive strength, which could be decreased by superplasticiser and l/s ratio. There is no significant effect of sand-to-cementitious ratio on compressive strength of fly ash-based AAC. The dry density decreases as the sand-to-cementitious ratio is decreased. The increasing l/s ratio and superplasticiser dosage could further decrease the dry density of fly ash-based AAC.


2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


Clay Minerals ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 213-223 ◽  
Author(s):  
V. Lilkov ◽  
I. Rostovsky ◽  
O. Petrov

AbstractCement mortars and concretes incorporating clinoptilolite, silica fume and fly ash were investigated for changes in their physical and mechanical properties. It was found that additions of 10% clinoptilolite and 10% Pozzolite (1:1 mixture of silica fume and fly ash) were optimal for improvement of the quality of the hardened products, giving 8% and 13% increases in flexural and compressive strength respectively. The specific pore volume of the mortars incorporating zeolite decreased between the 28th and 180th day to levels below the values for the control composition due to the fact that clinoptilolite exhibits its pozzolanic activity later in the hydration. In these later stages, pores with radii below 500 nm increased at the expense of larger pores. The change in the pore-size distribution between the first and sixth months of hydration occurs mostly in the mortars with added zeolite.


Sign in / Sign up

Export Citation Format

Share Document