scholarly journals APPRAISAL OF MOISTURE PROBLEM OF INHERITANCE BUILDING ENVELOPE ASSEMBLIES VIA VISIBLE AND INFRARED THERMOGRAPHY METHODS

2015 ◽  
Vol 75 (5) ◽  
Author(s):  
Ting Siew Jing ◽  
Md Azree Othuman Mydin ◽  
Nangkula Utaberta

In order to gauge the moisture performance of walls and roofs there is a need to investigate the paths of moisture penetrating into the wall assembly, how long and where the moisture stays, and whether it causes temporary reduction of performance or permanent damage. The non-contact safe nature and usefulness in temperature measurement of infrared thermography have made it a popular instrument for building diagnostics. Hence, this paper depicts a documentation process which makes use of both visible and infrared thermal images to identify moisture anomalies in heritage building envelope assemblies. In sequence to achieve the purpose, visible and infrared thermal images are recorded for comparison and further analysis. It can be concluded that infrared thermal imaging camera is useful for identification of moisture problems in building façade, whereas combination of both visible and infrared thermal imaging methods produces a more advanced, accurate and effective approach for building diagnostics.

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Jin-xia Ni ◽  
Si-hua Gao ◽  
Yu-hang Li ◽  
Shi-lei Ma ◽  
Tian Tian ◽  
...  

Zheng classification study based on infrared thermal imaging technology has not been reported before. To detect the relative temperature of viscera and bowels of different syndromes patients with pulmonary disease and to summarize the characteristics of different Zheng classifications, the infrared thermal imaging technology was used in the clinical trial. The results showed that the infrared thermal images characteristics of different Zheng classifications of pulmonary disease were distinctly different. The influence on viscera and bowels was deeper in phlegm-heat obstructing lung syndrome group than in cold-phlegm obstructing lung syndrome group. It is helpful to diagnose Zheng classification and to improve the diagnosis rate by analyzing the infrared thermal images of patients. The application of infrared thermal imaging technology provided objective measures for medical diagnosis and treatment in the field of Zheng studies and provided a new methodology for Zheng classification.


2020 ◽  
Author(s):  
Paramasivam Sabitha ◽  
Chanaveerappa Bammigatti ◽  
Surendran Deepanjali ◽  
Bettadpura Shamanna Suryanarayana ◽  
Tamilarasu Kadhiravan

AbstractBackgroundLocal envenomation following snakebites is accompanied by thermal changes, which could be visualized using infrared imaging. We explored whether infrared thermal imaging could be used to differentiate venomous snakebites from non-venomous and dry bites.MethodsWe prospectively enrolled adult patients with a history of snakebite in the past 24 hours presenting to the emergency of a teaching hospital in southern India. A standardized clinical evaluation for symptoms and signs of envenomation including 20-minute whole-blood clotting test and prothrombin time was performed to assess envenomation status. Infrared thermal imaging was done at enrolment, 6 hours, and 24 hours using a smartphone-based device under ambient conditions. Processed infrared thermal images were independently interpreted twice by a reference rater and once by three novice raters.FindingsWe studied 89 patients; 60 (67%) of them were male. Median (IQR) time from bite to enrolment was 11 (6.5—15) hours; 21 (24%) patients were enrolled within 6 hours of snakebite. In all, 48 patients had local envenomation with/without systemic envenomation, and 35 patients were classified as non-venomous/dry bites. Envenomation status was unclear in six patients. At enrolment, area of increased temperature around the bite site (Hot spot) was evident on infrared thermal imaging in 45 of the 48 patients with envenomation, while hot spot was evident in only 6 of the 35 patients without envenomation. Presence of hot spot on baseline infrared thermal images had a sensitivity of 93.7% (95% CI 82.8% to 98.7%) and a specificity of 82.9% (66.3% to 93.4%) to differentiate envenomed patients from those without envenomation. Interrater agreement for identifying hot spots was more than substantial (Kappa statistic >0.85), and intrarater agreement was almost perfect (Kappa = 0.93). Paradoxical thermal changes were observed in 14 patients.ConclusionsPoint-of-care infrared thermal imaging could be useful in the early identification of non-venomous and dry snakebites.Author summaryMost poisonous snakebites cause swelling of the bitten body part within a few hours if venom had been injected. Usually, health care providers diagnose poisonous snakebites by doing a clinical examination and by testing for incoagulable blood. If no abnormalities are found, then the snakebite is diagnosed as a non-poisonous bite or a dry bite. Swelling of the bitten body part results from venom-induced inflammation and is accompanied by local increase in skin temperature. It is possible to capture visual images of these temperature changes by using infrared imaging, the same technology used in night vision cameras. This study found that most persons with poisonous snakebites had hot areas on infrared images while such changes were observed in only a few persons with non-poisonous or dry snakebites. This new knowledge could help doctors identify non-poisonous and dry snakebites early.


2021 ◽  
pp. 147592172199895
Author(s):  
Li Xin ◽  
Shao Haidong ◽  
Jiang Hongkai ◽  
Xiang Jiawei

The vast majority of the existing diagnostic studies using deep learning techniques for rotating machinery focus on the vibration analysis under steady rotating speed. Nevertheless, the collected vibration signals are sensitive to time-varying speeds and the vibration sensors may cause structure damage of equipment after long-term close contact. Aiming at these aforementioned problems, a modified Gaussian convolutional deep belief network driven by infrared thermal imaging is proposed to automatically diagnose different faults of rotor-bearing system under time-varying speeds. First, infrared thermal images are measured to characterize the working states of rotor-bearing system to reduce the impact of changeable speeds. Second, Gaussian units are used to construct Gaussian convolutional deep belief network to well deal with infrared thermal images. Finally, trackable learning rate is designed to modify the training algorithm to enhance the performance. The comparison results verify the feasibility of the proposed method, which outperforms the other methods.


2012 ◽  
Vol 485 ◽  
pp. 16-22
Author(s):  
Fei Guo ◽  
Pei Sheng Zhu ◽  
Shu Guo Liu ◽  
Shen Jian Hu

In order to explore thermal imaging technologies’ applicability in building envelope and material defection, laboratory experiments and field tests have been carried out to record typical defection thermal images in the climate of Dalian area. Based on one typical building defection case, with its thermal images and working drawing, the effect of material and constructions on the nature and reason of its defection has been carefully analyzed, which can lead us to the conclusions that external insulation construction of building envelope of tiles facing can easily cause bursting or dropping accidents in Dalian area.


2021 ◽  
Vol 15 (2) ◽  
pp. e0008580
Author(s):  
Paramasivam Sabitha ◽  
Chanaveerappa Bammigatti ◽  
Surendran Deepanjali ◽  
Bettadpura Shamanna Suryanarayana ◽  
Tamilarasu Kadhiravan

Background Local envenomation following snakebites is accompanied by thermal changes, which could be visualized using infrared imaging. We explored whether infrared thermal imaging could be used to differentiate venomous snakebites from non-venomous and dry bites. Methods We prospectively enrolled adult patients with a history of snakebite in the past 24 hours presenting to the emergency of a teaching hospital in southern India. A standardized clinical evaluation for symptoms and signs of envenomation including 20-minute whole-blood clotting test and prothrombin time was performed to assess envenomation status. Infrared thermal imaging was done at enrolment, 6 hours, and 24 hours later using a smartphone-based device under ambient conditions. Processed infrared thermal images were independently interpreted twice by a reference rater and once by three novice raters. Findings We studied 89 patients; 60 (67%) of them were male. Median (IQR) time from bite to enrolment was 11 (6.5–15) hours; 21 (24%) patients were enrolled within 6 hours of snakebite. In all, 48 patients had local envenomation with/without systemic envenomation, and 35 patients were classified as non-venomous/dry bites. Envenomation status was unclear in six patients. At enrolment, area of increased temperature around the bite site (Hot spot) was evident on infrared thermal imaging in 45 of the 48 patients with envenomation, while hot spot was evident in only 6 of the 35 patients without envenomation. Presence of hot spot on baseline infrared thermal images had a sensitivity of 93.7% (95% CI 82.8% to 98.7%) and a specificity of 82.9% (66.3% to 93.4%) to differentiate envenomed patients from those without envenomation. Interrater agreement for identifying hot spots was more than substantial (Kappa statistic >0.85), and intrarater agreement was almost perfect (Kappa = 0.93). Paradoxical thermal changes were observed in 14 patients. Conclusions Point-of-care infrared thermal imaging could be useful in the early identification of non-venomous and dry snakebites.


2011 ◽  
Vol 271-273 ◽  
pp. 177-180
Author(s):  
Hai Feng Chang

Due to special characteristics of Carboform material, there are many difficulties to exam such material with traditional methods. Infrared thermal imaging technology shoots carboform to obtain infrared thermal images. With variation of time and temperature, the change principle of thermal performance difference of carboform in different temperature can be compared and analyzed. Effective data and reasonable fitting time can be extracted to fit for data with power exponential function. Then, imaging functions were utilized to perform gray change, median filter, fuzzy contrast enhancement, edge detection so as to output images on fitted data. Defects of specimen can be found. Example of some carboform sample based on infrared thermal wave verified feasibility of the proposed method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Balasankar Ganesan ◽  
Joanne Yip ◽  
Ameersing Luximon ◽  
Paul J. Gibbons ◽  
Alison Chivers ◽  
...  

Background: Conservative treatment, Ponseti method, has been considered as a standard method to correct the clubfoot deformity among Orthopedic society. Although the result of conservative methods have been reported with higher success rates than surgical methods, many more problems have been reported due to improper casting, casting pressure or bracing discomfort. Nowadays, infrared thermography (IRT) is widely used as a diagnostic tool to assess musculoskeletal disorders or injuries by detecting temperature abnormalities. Similarly, the foot skin temperature evaluation can be added along with the current subjective evaluation to predict if there is any casting pressure, excessive manipulation, or overcorrections of the foot, and other bracing pressure-related complications.Purpose: The main purpose of this study was to explore the foot skin temperature changes before and after using of manipulation and weekly castings.Methods: This is an explorative study design. Infrared Thermography (IRT), E33 FLIR thermal imaging camera model, was used to collect the thermal images of the clubfoot before and after casting intervention. A total of 120 thermal images (Medial region of the foot–24, Lateral side of the foot–24, Dorsal side of the foot−24, Plantar side of the foot−24, and Heel area of the foot–24) were collected from the selected regions of the clubfoot.Results: The results of univariate statistical analysis showed that significant temperature changes in some regions of the foot after casting, especially, at the 2nd (M = 32.05°C, SD = 0.77, p = 0.05), 3rd (M = 31.61, SD = 1.11; 95% CI: 31.27–31.96; p = 0.00), and 6th week of evaluation on the lateral side of the foot (M = 31.15°C, SD = 1.59; 95% CI: 30.75–31.54, p = 0.000). There was no significant temperature changes throughout the weekly casting in the medial side of the foot. In the heel side of the foot, significant temperature changes were noticed after the third and fourth weeks of casting.Conclusion: This study found that a decreased foot skin temperature on the dorsal and lateral side of the foot at the 6th week of thermography evaluation. The finding of this study suggest that the infrared thermography (IRT) might be useful as an adjunct assessment tool to evaluate the thermophysiological changes, which can be used to predict the complications caused by improper casting, over manipulative or stretching and casting-pressure related complications.


Author(s):  
Salahaldin Alshatshati ◽  
Kevin P. Hallinan ◽  
Robert J. Brecha

Energy efficiency programs implemented by utilities in the U.S. have rendered savings costing on average $0.03/kWh [1]. This cost is still well below energy generation costs. However, as the lowest cost energy efficiency measures are adopted, the cost effectiveness of further investment declines. Thus, there is a need to develop large-scale and relatively inexpensive energy auditing techniques to more efficiently find opportunities for savings. Currently, on-site building energy audits process are expensive, in the range of US$0.12/sf – $0.53/sf, and there is an insufficient number of professionals to perform the audits. Here we present research that addresses at community-wide scales the characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer R-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate R-values have been limited to stable exterior weather conditions. The approach posed here is based upon the development of a dynamic model of a building envelope component with unknown R-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model R-value and thermal capacitance are tuned to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. The results show that this methodology is capable of accurately estimating envelope thermal characteristics over a realistic spectrum of envelope R-values and thermal capacitance present in buildings nationally. With an assumed thermal image accuracy, thermal characteristics are predicted with a maximum error of respectively 20% and 14% for high and low R-values when the standard deviation of outside temperature over the previous 48 hours is as much as 5°C. Experimental validation on a test facility with variable surface materials was attempted under variable weather conditions, e.g., where the outdoor air temperature experiences varying fluctuations prior to imaging. The experimental validation realized errors less than 20% in predicting the R-value even when the standard deviation of outdoor temperature over the 48 hours prior to a measurement was approximately 5°C.


Author(s):  
P. Yu ◽  
H. Wu ◽  
C. Liu ◽  
Z. Xu

Diagnosis of water leakage in metro tunnels is of great significance to the metro tunnel construction and the safety of metro operation. A method that integrates laser scanning and infrared thermal imaging is proposed for the diagnosis of water leakage. The diagnosis of water leakage in this paper is mainly divided into two parts: extraction of water leakage geometry information and extraction of water leakage attribute information. Firstly, the suspected water leakage is obtained by threshold segmentation based on the point cloud of tunnel. And the real water leakage is obtained by the auxiliary interpretation of infrared thermal images. Then, the characteristic of isotherm outline is expressed by solving Centroid Distance Function to determine the type of water leakage. Similarly, the location of leakage silt and the direction of crack are calculated by finding coordinates of feature points on Centroid Distance Function. Finally, a metro tunnel part in Shanghai was selected as the case area to make experiment and the result shown that the proposed method in this paper can be used to diagnosis water leakage disease completely and accurately.


2021 ◽  
Vol 48 (5) ◽  
pp. 553-558
Author(s):  
Patricia Rodrigues Resende ◽  
Marcos Leal Brioschi ◽  
Franciele De Meneck ◽  
Eduardo Borba Neves ◽  
Manoel Jacobsen Teixeira

The diagnosis of the main complications resulting from lipoabdominoplasty has not yet been standardized. Infrared thermal imaging has been used to assess possible complications, such as necrosis and changes in micro- and macro-circulation, based on perforator mapping techniques, among others. The objective of this study was to present two clinical cases involving thermal imaging monitoring of the healing process of lipoabdominoplasty in the immediate postoperative evaluation and its preliminary results. Infrared thermography was performed 24 hours after the operation and on postoperative days 5, 25, and 27. In clinical case 1, it was found that the delta-R (∆TR)–defined as the difference in minimum temperature between the highest and lowest points in the SA3 region (caution suction area) following the classification established by Matarasso–was 0.4°C at 24 hours after surgery and decreased to 0.1°C on a postoperative day 5. There were no complications in this case. In contrast, in clinical case 2, the ∆TR was 1.7°C at 24 hours after surgery (upon hospital discharge) and remained high, at 2.2°C, on postoperative day 5. A higher ∆TR was found in the second patient, who developed necrosis of the surgical wound. The ∆TR thermal index may be a new tool for predicting possible complications, complementing the clinical evaluation and therapeutic decision-making.


Sign in / Sign up

Export Citation Format

Share Document