PERFORMANCE OF EPOXY RESIN AS SELF-HEALING AGENT

2015 ◽  
Vol 77 (16) ◽  
Author(s):  
Abdul Rahman Mohd Sam ◽  
Nur Farhayu Ariffin ◽  
Mohd Warid Hussin ◽  
Han Seung Lee ◽  
Mohamed A. Ismail ◽  
...  

Formation of cracks due to the shrinkage effects during curing and mechanical loading can deteriorate the concrete performance especially in terms of durability aspect. Chemical and harsh solutions will easily penetrate into the concrete and cause damage to the concrete. In order to solve this problem, researchers have introduced a self-healing concrete; the mechanism of automatically repairing concrete cracks without external intervention. Nowadays, the self-healing concrete by using bacteria as a healing agent had gained interest among researchers. In contrast, this paper presents the study on performance of epoxy resin without hardener as a self-healing agent in concrete. Mortar specimens were prepared with mass ratio of 1:3 (cement: fine aggregates), water-cement ratio of 0.48 and 5 to 20% epoxy resin of cement content. All tested specimens were subjected to wet-dry curing; where compressive strength, apparent porosity and self-healing evaluation were measured. Result shows that, the compressive strength of mortar with addition of epoxy resin by 10% increased significantly compared to normal mortar. Epoxy resin as a healing agent was found to be functioned well as the compressive strength and ultrasonic pulse velocity regain the initial reading with prolonged curing time. These results together with microstructure test indicate that epoxy resin can be used as a self-healing agent.

The cost of repairing cracked concrete is expensive as it requires special repair materials and skilled labour. Thus, the developments of new materials, like self-healing materials, are highly needed to repair cracks automatically and to restore or even increase concretes' strength to prolong its service life. The aim of this chapter was to investigate the performance of epoxy resin without hardener as a self-healing agent in mortar. A detailed introduction of self-healing mortar is given followed by a problem statement. The epoxy resin as a self-healing material is also explained briefly. Self-healing concept is also discussed in detail followed by the experimental program. Results revealed that the epoxy resin without hardener as a healing agent performed effectively as the compressive strength and ultrasonic pulse velocity of 365 days old cracked mortar samples regained the initial reading with prolonged curing time.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 416
Author(s):  
Yunfeng Qian ◽  
Dingyi Yang ◽  
Yanghao Xia ◽  
Han Gao ◽  
Zhiming Ma

Ultra-high performance concrete (UHPC) has a high self-healing capacity and is prone to bursting after exposure to high temperatures due to its characteristics. This work evaluates the damage and improvement of UHPC with coarse aggregates through mechanical properties (compressive strength and ultrasonic pulse velocity), transport properties (water absorption and a chloride diffusion test), and micro-properties such as X-ray diffraction (XRD), Mercury intrusion porosimetry (MIP), and Scanning electronic microscopy (SEM). The result demonstrates that polypropylene (PP) fibers are more suitable for high temperature tests than polyacrylonitrile (PAN) fibers. The result shows that 400 °C is the critical temperature point. With the increase in temperature, the hydration becomes significant, and the internal material phase changes accordingly. Although the total pore volume increased, the percentage of various types of pores was optimized within 400 °C. The mass loss gradually increased and the ultrasonic pulse velocity gradually decreased. While the compressive strength first increased and then decreased, and the increase occurred within 25–400 °C. As for the transport properties, the chloride migration coefficient and capillary absorption coefficient both increased dramatically due to the higher sensitivity to temperature changes. The results of the property improvement test showed that at temperatures above 800 °C, the compressive strength recovered by more than 65% and the ultrasonic pulse velocity recovered by more than 75%. In terms of transport properties, compared to the results before self-healing, the chloride migration coefficient decreased by up to 59%, compared with 89% for the capillary absorption coefficient, after self-healing at 800 °C. With respect to the enhancement effect after exposure to high temperatures, the environment of a 5% Na2SO4 solution was not as good as the clean water environment. The corresponding changes in microstructure during the high temperatures and the self-healing process can explain the change in the pattern of macroscopic properties more precisely.


2015 ◽  
Vol 6 (4) ◽  
pp. 178-183 ◽  
Author(s):  
Džigita Nagrockienė ◽  
Giedrius Girskas ◽  
Gintautas Skripkiūnas ◽  
Aurelijus Daugėla

Concrete is the most widely used building material obtained by hardening the mix made of coarse and fine aggregates, cement as the binding material, and water. The basic properties of concrete depend on the quality and properties of cement, w/c ratio and the homogeneity of compaction. Compressive strength is one of the most important properties of concrete. Materials used: Portland cement CEM I 42.5 R, 0/4 fraction sand, 4/16 fraction gravel, amorphous alumina silicate admixture, polycarboxylate ether-based superplasticizer Muraplast FK 63.30, and tap water. Five compositions of concrete mixes containing 0%, 2.5%, 5%, 7.5% and 10% of amorphous alumina silicate admixture by mass of cement were produced. The article analyses the effect of amorphous alumina silicate on the properties of concrete depending on the admixture content. The results revealed that the compressive strength of concrete after 7 days of curing increased by 7.1%, after 28 days of curing increased by 13.3% when the amorphous aluminum oxide doped silicate content was increased to 10%. Amorphous alumina silicate admixture added in quantities of up to 10%, increased the density of hardened concrete by 0.75%, and ultrasonic pulse velocity in specimens with the admixture increased up to 2.63%.


2017 ◽  
Vol 26 (1-2) ◽  
pp. 55-63 ◽  
Author(s):  
Anastasia Sotiropoulou ◽  
Stamatia Gavela ◽  
Nikolaos Nikoloutsopoulos ◽  
Dimitra Passa ◽  
Georgios Papadakos

AbstractIn the frame of an extended research program dealing with wood shavings utilization in mortar, a set of procedures were developed for verifying effects of wood shavings addition to specific mortar properties. Mixes containing wood shavings replacing fine aggregates by 0, 30, 50 and 70% of their volume were made. Workability, fresh mortar unit weight, ultrasonic pulse velocity (UPV) and flexural and compressive strength were determined, based on measurements, at various curing ages. Measurement results and analysis suggest that compressive strength reduction caused by wood shavings addition could be predicted. The outcome was standardized in the form of a multifactorial sigmoidal model. It was also made evident that the mix proportion of cement increases when wood shavings are used as a by volume replacement of conventional fine aggregates, due to the low value of specific gravity of wood compared to conventional aggregates. Another procedure is suggested based on mass and volume measurements aiming at the verification of the mix proportions in the final mortar mixture.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1255 ◽  
Author(s):  
Ghasan Fahim Huseien ◽  
Abdul Rahman Mohd Sam ◽  
Iman Faridmehr ◽  
Mohammad Hajmohammadian Baghban

This research investigated the application of epoxy resin polymer as a self-healing strategy for improving the mechanical and durability properties of cement-based mortar. The epoxy resin was added to the concrete mix at various levels (5, 10, 15, and 20% of cement weight), and the effectiveness of healing was evaluated by microstructural analysis, compressive strength, and non-destructive (ultrasonic pulse velocity) tests. Dry and wet-dry conditions were considered for curing, and for generating artificial cracks, specimens at different curing ages (1 and 6 months) were subjected to compressive testing (50 and 80% of specimen’s ultimate compressive strength). The results indicated that the mechanical properties in the specimen prepared by 10% epoxy resin and cured under wet-dry conditions was higher compared to other specimens. The degree of damage and healing efficiency index of this particular mix design were significantly affected by the healing duration and cracking age. An optimized artificial neural network (ANN) combined with a firefly algorithm was developed to estimate these indexes over the self-healing process. Overall, it was concluded that the epoxy resin polymer has high potential as a mechanical properties self-healing agent in cement-based mortar.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2021 ◽  
Vol 13 (4) ◽  
pp. 1881
Author(s):  
Mei-Yu Xuan ◽  
Yi Han ◽  
Xiao-Yong Wang

This study examines the hydration–mechanical–autogenous shrinkage–durability–sustainability properties of ternary composites with limestone filler (LF) and ground-granulated blast furnace slag (BFS). Four mixtures were prepared with a water/binder ratio of 0.3 and different replacement ratios varying from 0 to 45%. Multiple experimental studies were performed at various ages. The experimental results are summarized as follows: (1) As the replacement levels increased, compressive strength and autogenous shrinkage (AS) decreased, and this relationship was linear. (2) As the replacement levels increased, cumulative hydration heat decreased. At the age of 3 and 7 days, there was a linear relationship between compressive strength and cumulative hydration heat. (3) Out of all mixtures, the ultrasonic pulse velocity (UPV) and electrical resistivity exhibited a rapid increase in the early stages and tended to slow down in the latter stages. There was a crossover of UPV among various specimens. In the later stages, the electrical resistivity of ternary composite specimens was higher than plain specimens. (4) X-ray diffraction (XRD) results showed that LF and BFS have a synergistic effect. (5) With increasing replacement ratios, the CO2 emissions per unit strength reduced, indicating the sustainability of ternary composites.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


Sign in / Sign up

Export Citation Format

Share Document