OPTIMIZATION OF NON THERMAL PLASMA REACTOR PERFORMANCE FOR THE DECOMPOSITION OF XYLENE

2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Nor Faraliana Shazwani Nor Azmi ◽  
Abdullahi Mohammed Evuti ◽  
Mohd Ariffin Abu Hassan ◽  
R. K. Raja Ibrahim

Non Thermal Plasma (NTP) is an emerging method used for the decomposition of volatile organic compounds (VOCs). This research focuses on the optimization of NTP reactor performance for decomposition of xylene from wastewater using response surface methodology (RSM) by operating the NTP reactor at applied voltage of 12-15 kV, discharge gap of 2.0-3.0 cm and gas flow rate of 2.0-5.0 L/min. An optimum xylene removal efficiency of 81.98% was obtained at applied voltage 15kV, discharge gap 2.09cm and gas flow rate at 2.36 L/min. The experimental removal efficiencies and model predictions were in close agreement with an error of 0.63%. 

2014 ◽  
Vol 955-959 ◽  
pp. 2147-2150
Author(s):  
Jing Xin Li ◽  
Yan Cheng Peng ◽  
Xin Zhang

The toluene being abatement by non-thermal plasma combined with photocatalyst was studied in the paper. As one of main factors, the influence on toluene abatement efficiency of gas flow rate, initial concentration and electric field intensity was analyzed in the study. Furthermore, the energy efficiency was another important index which had been compared among the different padding including of no padding, γ-Al2O3 padding and TiO2/γ-Al2O3 padding. The result of study showed that the technology of non-thermal plasma combined with photocatalyst had better buffer action against increasing of gas flow rate and initial concentration. When the abatement efficiency was more than 52%, the energy efficiency values had the tendency as TiO2/γ-Al2O3 >γ-Al2O3 padding > no padding.


2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1169
Author(s):  
Feng Chen ◽  
Dezheng Yang ◽  
Feng Yu ◽  
Yang Kun ◽  
Ying Song

In this work, the azoxystrobin removal in water by using a micro-size discharge array was investigated, and the removal efficiency can reach as high as 98.1% after 9 min plasma treatment as well as the energy utilization being only 0.73 g/(kW·h). Based on the relationship between the generation of gas bubbles and parameters of gas-liquid discharge, it was found that the variation of applied voltage, gas flow rate and initial solution temperature could cause particle number change, mass transfer rate change and the mass transfer time change, which significantly affected the practical applications at last. The experimental results indicated that when gas flow rate was 0.7 SLM (Standard Liter per Minute) and the initial solution temperature was 297 K with the applied voltage of 8 kV and discharge frequency of 6 kHz, the removal efficiency of azoxystrobin achieved maximum. Based on the analysis results of liquid mass spectrometry, the removal pathways of azoxystrobin were supposed by the decomposed by-products. Toxicity tests indicated that the decomposed products were safe and non-toxic. So, this study may reveal an azoxystrobin degradation mechanism and provide a safe, reliable and effective way for azoxystrobin degradation.


2006 ◽  
Vol 515 (4) ◽  
pp. 1970-1975 ◽  
Author(s):  
W. Chen ◽  
X. Lu ◽  
Q. Yang ◽  
C. Xiao ◽  
R. Sammynaiken ◽  
...  

2013 ◽  
Vol 278-280 ◽  
pp. 128-133
Author(s):  
Kang Hua Li ◽  
Yi Xi Cai ◽  
Xiao Hua Li ◽  
Wen He Han ◽  
Yun Xi Shi ◽  
...  

Characteristics of a water-cooled non-thermal plasma (NTP) reactor used to reduce diesel emissions were experimentally studied. The effects of working voltage, operating frequency and air flow rate on discharge power and concentrations of O3 and NO2 generated by NTP system were investigated at different surface temperatures of discharge zone. The experimental results show that, the discharge power of the reactor would increase with the increasing of working voltage, operating frequency and surface temperatures; air flow rate had little influence on discharge power; variation of O3 and NO2 concentration were different with the increasing of working voltage and operating frequency at different surface temperatures of discharge zone; when the surface temperature of discharge zone was constant, concentrations of O3 and NO2 increased firstly and then declined with the increasing of air flow rate; and concentrations of O3 and NO2 were higher at lower temperature.


2018 ◽  
Vol 15 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Baghdad Science Journal

In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the argon gas temperature, where argon gas temperature the exceed 350 ? as maximum value and study the effect of gas flow rate on the optical properties


2011 ◽  
Vol 383-390 ◽  
pp. 5907-5911 ◽  
Author(s):  
Xue Chen Li ◽  
Ning Yuan ◽  
Peng Ying Jia

Appling a high voltage to the dielectric barrier discharge device in a coaxial geometry in flowing argon, a uniform plasma plume is generated at one atmospheric pressure. The waveforms of discharge current and the applied voltage are investigated and results indicate that both the intensity and duration width of the discharge current pulse increase with increasing the applied voltage. The gas temperature of the plasma plume is investigated by using an infrared thermometer. The gas temperature of the plasma plume are functions of gas flow rate, peak value and the frequency of the applied voltage. Results show that the gas temperature increases with increasing the applied voltage or its frequency, while it decreases with increasing the gas flow rate. A qualitative explanation is given for the variance of gas temperature as functions of the experimental parameters by analyzing the waveforms of the discharge current and the applied voltage.


2005 ◽  
Vol 8 (2) ◽  
Author(s):  
Jen-Shih Chang ◽  
Y. Uchida ◽  
M. Ara ◽  
J. T. Kim ◽  
K. Urashima ◽  
...  

AbstractIn this work, soot free non-thermal plasma reforming was experimentally investigated. Experiments were conducted for gas temperatures up to 200°C, gas flow rate from 0.1 to 2 LPM and percentage mixture of oxygen to fuel gases (Propane-nitrogen) from 0 to 30%. The flow stabilized corona discharge device under pulsed corona operations will be discussed. The results show that; (1) up to 40% of propane was converted to hydrogen, ethylene, methane, propylene and ethane etc.; (2) the hydrogen selectivity is near 50% of reformed gas; (3) soot free condition can be achieved with more then 3% of oxygen in the fuel gases at 200°C. The fundamental discharge characteristics of the discharge devices and soot formation characteristics will be discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document