A COMPACT AND WIDEBAND FLAT LENS ANTENNA BASED ON APERTURE COUPLED PATCHES FOR X-BAND APPLICATIONS

2016 ◽  
Vol 78 (6-2) ◽  
Author(s):  
Abdisamad Ali Awaleh ◽  
Samsul Haimi Dahlan

This paper presents a wideband and compact flat lens antenna for X-band applications. An 8×8 array of this antenna is designed and realized by using aperture coupled patches from the multilayer Frequency Selective Surface concept. The basic antenna element configuration of this design consists of two back-to-back printed patches with a common ground plane coupling. A pair of identical slots is embedded on the ground plane to provide the necessary phase error compensation between receive and transmit apertures. The lengths of the two slots are varied simultaneously to investigate how much phase shift range can be achieved with this simple design structure. The antenna elements are simulated using the electromagnetic simulation software CST Microwave Studio. A 209° transmission phase range was achieved with transmission coefficient variations of better than -2.25 dB. The gain of the feeding horn antenna used is 9 dB at 10 GHz. Upon the implementations of the lens structure, the gain of the overall antenna system has increased to 16 dB. Our simulation shows a 3-dB transmission bandwidth of around 33% could be achieved for the unit cell. Radiation pattern simulation of the antenna system shows a good symmetry between E and H-plane with a half-power beamwidth of 19.2° and 19.0° in E-plane and H-plane respectively. The gain is greater than 9 dB from 8 to 12 GHz with maximum gain of 16 dB is achieved at 10 GHz. The proposed antenna design uses a simple and less fabrication complexity mechanism for phase error correction. 

2017 ◽  
Vol 9 (7) ◽  
pp. 1509-1516 ◽  
Author(s):  
Eric Arnaud ◽  
Cyrille Menudier ◽  
Jamil Fouany ◽  
Thierry Monediere ◽  
Marc Thevenot

This paper presents an original solution to design a compact dual circularly polarized isoflux antenna for nanosatellite applications. This kind of antenna has been previously designed in our laboratory, for a single circular polarization. This antenna is composed of a dual circularly polarized feed and a choke horn antenna. This feed is a cross-shaped slot in the ground plane, which provides coupling between a patch and a ring microstrip line with two ports. It is located at the center of a choke horn antenna. The simulated antenna presents an axial ratio <3 dB and a realized gain close to 0 dB over a 400 MHz bandwidth (8.0–8.4 GHz) at the limit of coverage, i.e. 65° whatever the azimuth angle (φ) and the port. A 20 dB matching for each port and 13 dB isolation characteristics between the two ports have been achieved on this bandwidth. It has been realized and successfully measured.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 624 ◽  
Author(s):  
Pawan Kumar ◽  
Shabana Urooj ◽  
Fadwa Alrowais

A compact, low-profile, coplanar waveguide (CPW)-fed quad-port multiple-input–multiple-output (MIMO)/diversity antenna with triple band-notched (Wi-MAX, WLAN, and X-band) characteristics is proposed for super-wideband (SWB) applications. The proposed design contains four similar truncated–semi-elliptical–self-complementary (TSESC) radiating patches, which are excited through tapered CPW feed lines. A complementary slot matching the radiating patch is introduced in the ground plane of the truncated semi-elliptical antenna element to obtain SWB. The designed MIMO/diversity antenna displays a bandwidth ratio of 31:1 and impedance bandwidth (|S11| ≤ − 10 dB) of 1.3–40 GHz. In addition, a complementary split-ring resonator (CSRR) is implanted in the resonating patch to eliminate WLAN (5.5 GHz) and X-band (8.5 GHz) signals from SWB. Further, an L-shaped slit is used to remove Wi-MAX (3.5 GHz) band interferences. The MIMO antenna prototype is fabricated, and a good agreement is achieved between the simulated and experimental outcomes.


2017 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
C. J. Malathi ◽  
D. Thiripurasundari

A 2´1 (two-element) multiple-input multiple-output (MIMO) patch antenna system is designed and fabricated for (2.43 – 2.57) GHz LTE band 7 operation. It uses comple-mentary split -ring resonator (CSRR) loading on its ground plane for antenna miniaturization. This reduces the single-element antenna size by 76%. The total board size of the proposed MIMO antenna system, including the GND plane is 50´50´0.8mm3, while the single-patch antenna element has a size of 18.5 ´16mm2. The antenna is fabricated and tested. Measured results are in good agreement with simulations. A minimum measured isolation of 10 dB is obtained given the close interelement spacing of 0.17λ.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Yuanyuan Kong ◽  
Yingsong Li ◽  
Kai Yu

AbstractA compact high isolation MIMO-UWB antenna with triple frequency rejection bands is proposed for UWB communication applications. The proposed MIMO-UWB antenna consists of two identical UWB antennas and each antenna element has a semicircle ring shaped radiation patch fed by a bend microstrip feeding line for covering the UWB band, which operates from 2.85 GHz to 11.79 GHz with an impedance bandwidth of 122.1 %. By etching a L-shaped slot on the ground plane, and embedding an “anchor” shaped stub into the patch and integrating an open ring under the semicircle shaped radiation patch, three notch bands are realized to suppress WiMAX (3.3–3.6 GHz), WLAN(5.725–5.825 GHz) and uplink of X-band satellite (7.9–8.4 GHz) signals. The high isolation with S21<–20 dB in most UWB band is obtained by adding a protruded decoupling structure. The design procedure of the MIMO-UWB antenna is given in detail. The proposed MIMO-UWB antenna is simulated, fabricated and measured. Experimental results demonstrate that the proposed MIMO-UWB antenna has a stable gain, good impedance match, high isolation, low envelope correlation coefficient and good radiation pattern at the UWB operating band and it can provide three designated notch bands.


2021 ◽  
Author(s):  
satish kumar ◽  
Gunasekaran Thangavel ◽  
Said Amer Salim Al Ismaili Ismaili ◽  
Balambigai Subramanian

Abstract For the operation of 2.45GHz ISM band, a 2x2 Multiple Input Multiple Output (MIMO) antenna system is designed and fabricated. Complementary Split Ring Resonator (CSRR) is used in the MIMO patch and loaded on its ground plane to miniaturize the single antenna element. The single patch antenna element of 14x18 mm2 is fixed in a board of the Designed MIMO antennae system measuring 100x50x0.8 mm3. The antenna is tested by measuring radiation pattern, gain, VSWR, mutual coupling and return loss. The results of the Designed antenna systems are in good agreement with the simulations. In comparison to a conventional microstrip antenna, the Designed antenna achieves a 75% reduction in the resonant frequency.


2016 ◽  
Vol 23 (6) ◽  
pp. 729-735
Author(s):  
Md Rezwanul Ahsan ◽  
Mohammad Tariqul Islam ◽  
Mohammad Habib Ullah

AbstractThis paper presents a simple design analysis and performance evaluation of rectangular, slotted, microstrip feed patch antenna. The design processes are performed by employing the finite element method (FEM)-based commercial EM simulation software High-Frequency Structural Simulator (HFSS). The proposed multiband antenna is composed of a rectangular, slotted radiator formed with four arc slots and central square slot, reduced ground plane, and microstrip line for feeding. The patch antenna is excited through the standard 50 Ω RF transmission line, impedance-compliant SMA connector that is connected to the microstrip line. The optimal parametric dimensions from the numerical simulations are used for constructing the physical prototype on a custom-made, ceramic-filled biopolymer substrate of εr=10.0. Based on simulation results, the experimental data are collected, analyzed, and compared; the surface current distributions on the patch, gain, and radiation patterns are critically discussed. The measured results show the impedance bandwidths for S11 less than -10 dB are 712 MHz at 0.788 GHz band, 1.38 GHz at 3.34 GHz band, and 2.46 GHz at 8.01 GHz band. The good radiation pattern performances, almost stable gain over the bands, and appreciable bandwidths recommend the antenna for operating in RFID, WiMAX, and C/X-band applications.


Author(s):  
Sumon Modak ◽  
Taimoor Khan

Abstract This study presents a novel configuration of a cuboidal quad-port ultra-wideband multiple-input and multiple-output antenna with WLAN rejection characteristics. The designed antenna consists of four F-shaped elements backed by a partial ground plane. A 50 Ω microstrip line is used to feed the proposed structure. The geometry of the suggested antenna exhibits an overall size of 23 × 23 × 19 mm3, and the antenna produces an operational bandwidth of 7.6 GHz (3.1–10.7 GHz). The notched band characteristic at 5.4 GHz is accomplished by loading a pair of spiral electromagnetic bandgap structures over the ground plane. Besides this, other diversity features such as envelope correlation coefficient, and diversity gain are also evaluated. Furthermore, the proposed antenna system provides an isolation of −15 dB without using any decoupling structure. Therefore, to validate the reported design, a prototype is fabricated and characterized. The overall simulated performance is observed in very close agreement with it's measured counterpart.


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 778
Author(s):  
Iftikhar Ahmad ◽  
Houjun Sun ◽  
Umair Rafique ◽  
Zhang Yi

This paper presents a design of a triangular slot-loaded planar rectangular antenna array for wideband millimeter-wave (mm-wave) 5G communication systems. The proposed array realizes an overall size of 35.5 × 14.85 mm2. To excite the array elements, a four-way broadband corporate feeding network was designed and analyzed. The proposed array offered a measured impedance bandwidth in two different frequency ranges, i.e., from 23 to 24.6 GHz and from 26 to 45 GHz. The single-antenna element of the array consists of a rectangular patch radiator with a triangular slot. The partial ground plane was used at the bottom side of the substrate to obtain a wide impedance bandwidth. The peak gain in the proposed array is ≈12 dBi with a radiation efficiency of >90%. Furthermore, the array gives a half-power beamwidth (HPBW) of as low as 12.5°. The proposed array has been fabricated and measured, and it has been observed that the measured results are in agreement with the simulated data.


Sign in / Sign up

Export Citation Format

Share Document