scholarly journals CRUDE OIL BIOREMEDIATION BY INDIGENOUS BACTERIA ISOLATED FROM OILY SLUDGE

2016 ◽  
Vol 78 (11-2) ◽  
Author(s):  
Nur Hafizah Azizan ◽  
Kasing Ak Apun ◽  
Lesley Maurice Bilung ◽  
Micky Vincent ◽  
Hairul Azman Roslan ◽  
...  

Enrichment culture technique leads to the discovery of six presumptive TPH-degrading bacteria. Identification and characterization tests using morphological, biochemical and molecular techniques have successfully isolated Pseudomonas aeruginosa (UMAS1PF), Serratia marcescens (UMAS2SF) and Klebsiella spp. (UMAS3KF). All strains were able to use crude oil as sole carbon and energy source for their growth since they were able to survive in Minimal Salt medium supplemented with 1% (v/v) crude oil. Growth study showed that they produced the highest cell counts on the third or fourth day by 108 – 1011 CFU/ml. Six artificial consortium inoculums have been produced from the growth study. Gas chromatography analysis showed that all isolates had the ability to degrade aliphatic hydrocarbon with 100% degradation of nC19 – C24. Among the isolates, UMAS2SF was the best and fastest n-alkane degrader with degradation percentage between 55 – 90% of n-C14 – C18 in 14 days. This was followed by UMAS1PF and UMAS3KF with 11 – 82% and 1.3% degradation, respectively. Enhancement study showed that plot with inoculum and NPK addition successfully enhanced n-alkane degradation. Plot A2:B3+NPK degraded n-alkane the fastest followed by plot treated by C+NPK, A1:B2, B+NPK and A2:B3. Result showed that UMAS1PF was the best PAHs degrader as most of the high molecular weight PAHs was degraded. In the enhancement study, the plot amended with A2:B3 showed the highest PAHs degradation, followed by plots A1:B2, A3:B1:C2 and A1:C3 that was assigned as the third, fourth and fifth best in mineralizing PAHs, respectively.

Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3362-3370 ◽  
Author(s):  
Maki Teramoto ◽  
Masahito Suzuki ◽  
Fumiyoshi Okazaki ◽  
Ariani Hatmanti ◽  
Shigeaki Harayama

Petroleum-hydrocarbon-degrading bacteria were obtained after enrichment on crude oil (as a ‘chocolate mousse’) in a continuous supply of Indonesian seawater amended with nitrogen, phosphorus and iron nutrients. They were related to Alcanivorax and Marinobacter strains, which are ubiquitous petroleum-hydrocarbon-degrading bacteria in marine environments, and to Oceanobacter kriegii (96.4–96.5 % similarities in almost full-length 16S rRNA gene sequences). The Oceanobacter-related bacteria showed high n-alkane-degrading activity, comparable to that of Alcanivorax borkumensis strain SK2. On the other hand, Alcanivorax strains exhibited high activity for branched-alkane degradation and thus could be key bacteria for branched-alkane biodegradation in tropical seas. Oceanobacter-related bacteria became most dominant in microcosms that simulated a crude oil spill event with Indonesian seawater. The dominance was observed in microcosms that were unamended or amended with fertilizer, suggesting that the Oceanobacter-related strains could become dominant in the natural tropical marine environment after an accidental oil spill, and would continue to dominate in the environment after biostimulation. These results suggest that Oceanobacter-related bacteria could be major degraders of petroleum n-alkanes spilt in the tropical sea.


2015 ◽  
Vol 39 (2) ◽  
pp. 79-85
Author(s):  
Yustian Rovi Alfiansah ◽  
Mindi Adindasari ◽  
Mentari Argarini ◽  
Yeti Darmayati ◽  
Ruyitno

Several harbours in North Jakarta have been polluted by spills of oil and their derivates. We suggest that diverse species of crude oil and polycyclic aromatic hydrocarbon-degrading bacteria  inhabit these harbours. An experiment was undertaken in 2007 to isolate crude oil and polycyclic aromatic hydrocarbon (PAH)-degrading bacteria from oil-polluted harbours, such as Muara Baru, Sunda Kelapa and Tanjung Priok. Sea water and sediment samples were collected twice, in March and April. Crude oil and PAH-degrading bacteria were isolated from enrichment culture of samples in an enrichment medium (SWP), using ONR7a medium with the addition of 5 types of PAH gases or Arabian Light Crude Oil 210 (ALCO 210) onto medium. This study reported that fluoranthene and crude oil-degrading bacteria were the major bacteria isolated from the three polluted harbours. In total, 109 isolates have been collected which can degrade crude oil (29% of total isolates), fluoranthene (33%), fluorene (20%), pyrene (7%), dibenzothiopene (6%), and phenantrene (5 %). Among these isolates, 5 isolates have the capability to degrade 5 types of PAH and ALCO 210. They were Alcanivorax sp. B-1084, Pseudomonas sp. D5-38b, Alcanivorax sp. TE-9, Bacillus sp. L41, Alcanivorax dieselolei strain B-5 clone 1. Culturable bacteria have been isolated mostly from the Sunda Kelapa samples, with fewer in those from Muara Baru and Tanjung Priok, respectively


2021 ◽  
Vol 9 (6) ◽  
pp. 1200
Author(s):  
Gareth E. Thomas ◽  
Jan L. Brant ◽  
Pablo Campo ◽  
Dave R. Clark ◽  
Frederic Coulon ◽  
...  

This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.


2021 ◽  
Vol 11 (14) ◽  
pp. 6305
Author(s):  
Xiaosen Li ◽  
Yakui Chen ◽  
Xianyuan Du ◽  
Jin Zheng ◽  
Diannan Lu ◽  
...  

The study applied microbial molecular biological techniques to show that 2.5% to 3.0% (w/w) of diesel in the soil reduced the types and number of bacteria in the soil and destroyed the microbial communities responsible for the nitrogen cycle. In the meantime, the alkane degradation gene alkB and polycyclic aromatic hydrocarbons (PAHs) degradation gene nah evolved in the contaminated soil. We evaluated four different remediation procedures, in which the biostimulation-bioaugmentation joint process reached the highest degradation rate of diesel, 59.6 ± 0.25% in 27 days. Miseq sequencing and quantitative polymerase chain reaction (qPCR) showed that compared with uncontaminated soil, repaired soil provides abundant functional genes related to soil nitrogen cycle, and the most significant lifting effect on diesel degrading bacteria γ-proteobacteria. Quantitative analysis of degrading functional genes shows that degrading bacteria can be colonized in the soil. Gas chromatography-mass spectrometry (GC-MS) results show that the components remaining in the soil after diesel degradation are alcohol, lipids and a small amount of fatty amine compounds, which have very low toxicity to plants. In an on-site remediation experiment, the diesel content decreased from 2.7% ± 0.3 to 1.12% ± 0.1 after one month of treatment. The soil physical and chemical properties returned to normal levels, confirming the practicability of the biosimulation-bioaugmentation jointed remediation process.


2020 ◽  
Vol 12 (17) ◽  
pp. 6862
Author(s):  
Chien Li Lee ◽  
Cheng-Hsien Tsai ◽  
Chih-Ju G. Jou

The oily sludge from crude oil contains hazardous BTEX (benzene, toluene, ethylbenzene, xylene) found in the bottom sediment of the crude oil tank in the petroleum refining plant. This study uses microwave treatment of the oily sludge to remove BTEX by utilizing the heat energy generated by the microwave. The results show that when the oily sludge sample was treated for 60 s under microwave power from 200 to 300 W, the electric field energy absorbed by the sample increased from 0.17 to 0.31 V/m and the temperature at the center of the sludge sample increased from 66.5 °C to 96.5 °C. In addition, when the oily sludge was treated for 900 s under microwave power 300 W, the removal rates were 98.5% for benzene, 62.8% for toluene, 51.6% for ethylbenzene, and 29.9% for xylene. Meanwhile, the highest recovery rates of light volatile hydrocarbons in sludge reached 71.9% for C3, 71.3% for C4, 71.0% for C5, and 78.2% for C6.


Author(s):  
Wim van der Meer ◽  
Colin Stephen Scott ◽  
MarinusH. de Keijzer

AbstractThis study evaluated inter- and intra-observer variabilities of band cell and atypical lymphocyte differentials and the influence of instrument flagging information on resulting microscopic differentials. Five stained slides with a range of band cell counts and five with variable numbers of atypical lymphocytes were sent for morphological review by 30 technicians. No supplementary full blood cell count information was provided. Two months later, the same slides were sent, together with their corresponding analyzer reports comprising the full blood cell count, automated differentials and flags, to the same technicians. The first and second appraisals of band cells and variant lymphocytes both showed poor levels of inter-observer consistency. Observed values for all slides were very wide and suggested a high inherent predisposition to erroneous reporting practices. Analysis of category trends showed that analyzer left shift or immature granulocytes flags had no influence on observer band cell assessments as downward vs. upward category revisions were evenly balanced. The findings for atypical lymphocytes were, however, somewhat different. Two slides with no flags both showed balanced category revisions, whereas two of the three slides with atypical lymphocyte flags showed clear evidence of upward category revision. The third slide with an atypical lymphocyte flag did not show any overall category trend, but six of the seven observers who in the first examination recorded atypical lymphocyte estimates of ≤30% revised their estimates upward when the slides were examined the second time. These results suggest that morphologist access to an analyzer report and flagging information is unlikely to affect the “randomness” of band cell determinations but it may induce observer bias in variant lymphocyte estimates.


Author(s):  
Tudararo-Aherobo Laurelta ◽  
Okotie Sylvester ◽  
Ataikiru Tega ◽  
Stephen Avwerosuoghene

Aim: The research aims to assess the biodegradability of crude oil polluted aquatic environment using indigenous hydrocarbon degrading bacteria. Place and Duration of Study: The research was conducted in the Environmental Management and Toxicology Laboratory, Federal University of Petroleum Resources, Effurun, Delta State. Methodology: Hydrocarbon degrading bacteria species were isolated from hydrocarbon contaminated soils, screened and used for the degradation of crude oil. 5% and 10% crude oil were used to spike the test microcosm. Physicochemical parameters such as, pH, turbidity, total petroleum hydrocarbon (TPH) and bacterial counts of the bioremediated crude oil contaminated water were monitored on Day 0, 7 and 14. The biodegradation of the crude oil was done with the various bacteria isolates singly and as a consortium. Standard methods of American Public Health Association (APHA) and American Society for Testing and Materials (ASTM) were used for the analysis. Results: The isolates identified and used for the biodegradation process were, Azomonas sp., Enterococcus sp., Klebsiella sp. and Rhizobactersp. On day 14, in the microcosms with 5% crude oil contamination, Azomonas sp. recorded the highest turbidity reading of 328 ± 2.0 NTU, while Rhizobacter sp. recorded the least with 57.67 ± 0.58 NTU. The bacterial countswere between 7.68 ± 0.002 CFU/ml and 8.05 ± 0.10x 107 CFU/ml for Rhizobacter sp. and Azomonas sp. respectively.The crude oil was also degraded most in the microcosm treated with Azomonas sp. with a residual TPH concentration of 0.0013± 0.005 mg/l.For the 10% crude oil contaminated microcosms, TPH was also biodegraded most by Azomonas sp. with a value of 0.0026 ± 0.002mg/l. Turbidity readings were between 82 ± 1.0 NTU and 375.33 ± 0.57 NTU for Rhizobacter sp. and Azomonas sp. respectively. Bacterial counts were between (7.71± 0.012)x 107CFU/ml – (8.13± 0.001) x 107CFU/ml for Rhizobacter sp. and Azomonassp. respectively. Conclusion:There wasincreased microbial countsand decrease of residual crude oil concentration, indicating degradation of the crude oil by all the isolates.However, Azomonas sp. recorded the highest TPH degradation for both the 5% and 10% crude oil contaminated microcosms.Thus, findings from the research indicate that hydrocarbon degrading bacteria exist in our environment and can be used in the remediation of aquatic polluted environment.


Sign in / Sign up

Export Citation Format

Share Document