CHARACTERIZATION OF TAPIOCA STARCH PLASTICIZED BY 1-ETHYL-3-METHYLIMIDAZOLIUM ACETATE

2017 ◽  
Vol 79 (5-3) ◽  
Author(s):  
Shajaratuldur Ismail ◽  
Nurlidia Mansor ◽  
Zakaria Man ◽  
Khairun Azizi Azizli

Starch is one of natural materials that been used for producing biodegradable materials. The starch-based materials are produced through a process known as gelatinization with the presence of plasticizer and elevated temperature. Properties of starch-based materials are lacking in terms of viscosity, water absorption, thermal and mechanical properties compare with synthetic materials. Researchers are involved in finding ways for improvement of starch-based materials properties and one of that is introducing new plasticizer. 1-ethyl-3-methylimidazolium acetate, [Emim][OAc] is an ionic liquid that used as plasticizer to produce thermoplastic starch. Starch plasticized by [Emim][OAc] were prepared with different total plasticizer contents (50%,70%) and [Emim][OAc]/water ratio (1:6,1:4,2:3 wt%). The thermoplastic starches were characterized in terms of morphology, crystalline structure and thermal degradation. The results showed that 70% of total plasticizer contents were mixed well during gelatinization process. [Emim][OAc] contributed to granule disruption as shown by SEM. Based on the XRD analysis, it was shown that thermoplastic starch at 70% total plasticizer contents and 1:4 wt% ratio of [Emim][OAc]/water, caused disruption of the A-type crystalline structure, generated VH-type crystalline structure and thus increased the mobility of the amorphous starch. The presence of [Emim][OAc] promotes the thermal degradation of starch molecules as described by TGA. Therefore, plasticizer contents and [Emim][OAc]/water ratio are vital parameters that influences the properties of thermoplastic starch.

Author(s):  
L.E. Murr ◽  
A.B. Draper

The industrial characterization of the machinability of metals and alloys has always been a very arbitrarily defined property, subject to the selection of various reference or test materials; and the adoption of rather naive and misleading interpretations and standards. However, it seems reasonable to assume that with the present state of knowledge of materials properties, and the current theories of solid state physics, more basic guidelines for machinability characterization might be established on the basis of the residual machined microstructures. This approach was originally pursued by Draper; and our presentation here will simply reflect an exposition and extension of this research.The technique consists initially in the production of machined chips of a desired test material on a horizontal milling machine with the workpiece (specimen) mounted on a rotary table vice. A single cut of a specified depth is taken from the workpiece (0.25 in. wide) each at a new tool location.


2021 ◽  
Vol 190 ◽  
pp. 110272 ◽  
Author(s):  
Md. Habibur Rahman ◽  
Emdadul Haque Chowdhury ◽  
Didarul Ahasan Redwan ◽  
Sungwook Hong

2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


2016 ◽  
Vol 98 ◽  
pp. 70-74
Author(s):  
Andrius Laurikėnas ◽  
Jurgis Barkauskas ◽  
Aivaras Kareiva

In this study, lanthanide elements (Ln3+) and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid (TFBDC) based metal-organic frameworks (MOFs) were synthesized by precipitation and diffusion-controlled precipitation methods. Powders insoluble in aqueous media and polar solvents were obtained. The microstructure and properties of Ln3+ MOFs were evaluated and discussed. X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and fluorescence spectroscopy (FLS) were carried out to characterize Ln3+ MOF's crystallinity, the microstructure, chemical composition and optical properties.


2021 ◽  
Vol 17 ◽  
Author(s):  
Amita Sahu ◽  
Sudhanshu Shekhar Swain ◽  
Goutam Ghosh ◽  
Deepak Pradhan ◽  
Dipak Kumar Sahu ◽  
...  

Background: Literature evidences as well as traditional uses of genus Alphonsea reveal significant antimicrobial and anti-oxidant activity, which encourages to consider A. madraspatana to have potent antimicrobials, there by offering potential adjuncts to synthesize improved antimicrobial Silver nanoparticles (AgNPs). The objective of the present exposition is to optimize reaction parameters to synthesize antimicrobial Biogenic Silver nanoparticles (BAgNPs) from extract of A. madraspatana leaves (AML) and to evaluate the effect against bacteria. Methods: BAgNPs was synthesized by optimized reaction. The Synthesized nanoparticles were characterized by UV, IR, ICP-MS and XRD analysis. The antibacterial potency of optimized BAgNPs was evaluated against E. coli by comparing with positive controls. Results: Results of optimization process indicate nanoscale BAgNPs were produced at operating temp. of 45°C for 120 min at pH 8 with 1:5 volume ratio of AgNO3 and extract. Optimized BAgNPs exhibits relatively higher antimicrobial activity (31±1mm) compared to Ciprofloxacin (27±1mm) and marketed nano silver (28± 2 mm). The developed BAgNPs shows comparable biofilm inhibition (86.50%) as compared to marketed nano silver (88.10%) and Ciprofloxacin (83.10%). Conclusion: Experimental evidence suggests methanolic extract of AML under predefined conditions successfully generate nano-template of silver with better antibacterial response against E. coli.


Cerâmica ◽  
2015 ◽  
Vol 61 (358) ◽  
pp. 160-167 ◽  
Author(s):  
A. W. Huang ◽  
C. Santos ◽  
R. O. Magnago ◽  
R. F. F. Silva ◽  
K. Strecker ◽  
...  

<p>Alumina-based ceramics, Al<sub>2</sub>O<sub>3</sub>, exhibit a combination of properties which favor its use as biomaterial, specifically as structural dental prosthesis. Its most important properties as biomaterial are its elevated hardness, chemical stability and biocompatibility. Usually, Al<sub>2</sub>O<sub>3</sub> is processed by solid-state sintering at a temperature of about 1600 <sup>o</sup>C, but it is very difficult to eliminate the porosity due to its diffusional characteristics. The objective of this work was the development and characterization of sintered Al<sub>2</sub>O<sub>3</sub> ceramics, densified with a transient liquid phase formed by a bioactive 3CaO.P<sub>2</sub>O<sub>5</sub>-SiO<sub>2</sub>-MgO glass. Powder mixtures of 90 wt.% Al<sub>2</sub>O<sub>3</sub> and 10 wt.% bioglass were milled, compacted and sintered at 1200 <sup>o</sup>C to 1450 <sup>o</sup>C. Comparatively, monolithic Al<sub>2</sub>O<sub>3</sub> samples were sintered at 1600 <sup>o</sup>C/120 min. The sintered specimens were characterized by relative density, crystalline phases, microstructure and mechanical properties. The results indicate that the specimen sintered at 1450 <sup>o</sup>C/120 min present the best properties. Under this sintering condition, a relative density of 95% was reached, besides hardness higher than 9 GPa and fracture toughness of 6.2 MPa.m<sup>1/2</sup>. XRD analysis indicate alumina (αAl<sub>2</sub>O<sub>3</sub>), whitlockite (3CaO.P<sub>2</sub>O<sub>5</sub>) and diopsite [3(Ca,Mg)O.P<sub>2</sub>O<sub>5</sub>], as crystalline phases. Comparatively, monolithic sintered Al<sub>2</sub>O<sub>3</sub> samples presented 92% of relative density with 17.4 GPa and 3.8 MPa.m<sup>1/2</sup> of hardness and fracture toughness respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document