scholarly journals Some fundamental properties for regular element of electroencephalography signals semigroup during epileptic seizure

Author(s):  
Ameen Omar Ali Barja ◽  
Tahir Ahmad ◽  
Faisal Abdurabu Mubarak Binjadhnan

Electroencephalography (EEG) is a record of electrical activity along the scalp. It is measures voltage fluctuations resulting from ionic current flows within the neurons of the brain. EEG is most often used to diagnose epilepsy, which causes understandable abnormalities in EEG readings. The mathematical analysis of EEG signals assists medical specialists by providing a clarification of the brain activity being observed, so increasing the information about the structure and function of the human brain. EEG signals during epileptic seizure can be viewed as a semigroup of square matrices under matrix multiplication, and every element in that semigroup is shown to be regular. In this paper, we will present some main properties of regular element of EEG signals during epileptic seizure.

2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


2021 ◽  
pp. 1-10
Author(s):  
Shahul Mujib Kamal ◽  
Norazryana Mat Dawi ◽  
Hamidreza Namazi

BACKGROUND: Walking like many other actions of a human is controlled by the brain through the nervous system. In fact, if a problem occurs in our brain, we cannot walk correctly. Therefore, the analysis of the coupling of brain activity and walking is very important especially in rehabilitation science. The complexity of movement paths is one of the factors that affect human walking. For instance, if we walk on a path that is more complex, our brain activity increases to adjust our movements. OBJECTIVE: This study for the first time analyzed the coupling of walking paths and brain reaction from the information point of view. METHODS: We analyzed the Shannon entropy for electroencephalography (EEG) signals versus the walking paths in order to relate their information contents. RESULTS: According to the results, walking on a path that contains more information causes more information in EEG signals. A strong correlation (p= 0.9999) was observed between the information contents of EEG signals and walking paths. Our method of analysis can also be used to investigate the relation among other physiological signals of a human and walking paths, which has great benefits in rehabilitation science.


2014 ◽  
Vol 9 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Danya Glaser

Purpose – The purpose of this paper is to outline brain structure and development, the relationship between environment and brain development and implications for practice. Design/methodology/approach – The paper is based on a selected review of the literature and clinical experience. Findings – While genetics determine the sequence of brain maturation, the nature of brain development and functioning is determined by the young child's caregiving environment, to which the developing brain constantly adapts. The absence of input during sensitive periods may lead to later reduced functioning. There is an undoubted immediate equivalence between every mind function – emotion, cognition, behaviour and brain activity, although the precise location of this in the brain is only very partially determinable, since brain connections and function are extremely complex. Originality/value – This paper provides an overview of key issues in neurodevelopment relating to the development of young children, and implications for policy and practice.


2021 ◽  
Vol 17 (2) ◽  
pp. 109-113
Author(s):  
Ameen Omar Barja

One of the most important fields in clinical neurophysiology is an electroencephalogram (EEG). It is a test used to detect problems related to the brain electrical activity, and it can track and records patterns of brain waves. EEG continues to play an essential role in diagnosis and management of patients with epileptic seizure disorders. Nevertheless, the outcome of EEG as a tool for evaluating epileptic seizure is often interpreted as a noise rather than an ordered pattern. The mathematical modelling of EEG signals provides valuable data to neurologists, and is heavily utilized in the diagnosis and treatment of epilepsy. EEG signals during the seizure can be modeled as ordinary differential equation (ODE). In this study we will present an alternative form of ODE of EEG signals through the seizure.


2021 ◽  
pp. 2150048
Author(s):  
Hamidreza Namazi ◽  
Avinash Menon ◽  
Ondrej Krejcar

Our eyes are always in search of exploring our surrounding environment. The brain controls our eyes’ activities through the nervous system. Hence, analyzing the correlation between the activities of the eyes and brain is an important area of research in vision science. This paper evaluates the coupling between the reactions of the eyes and the brain in response to different moving visual stimuli. Since both eye movements and EEG signals (as the indicator of brain activity) contain information, we employed Shannon entropy to decode the coupling between them. Ten subjects looked at four moving objects (dynamic visual stimuli) with different information contents while we recorded their EEG signals and eye movements. The results demonstrated that the changes in the information contents of eye movements and EEG signals are strongly correlated ([Formula: see text]), which indicates a strong correlation between brain and eye activities. This analysis could be extended to evaluate the correlation between the activities of other organs versus the brain.


Author(s):  
Sravanth Kumar Ramakuri ◽  
Chinmay Chakraboirty ◽  
Anudeep Peddi ◽  
Bharat Gupta

In recent years, a vast research is concentrated towards the development of electroencephalography (EEG)-based human-computer interface in order to enhance the quality of life for medical as well as nonmedical applications. The EEG is an important measurement of brain activity and has great potential in helping in the diagnosis and treatment of mental and brain neuro-degenerative diseases and abnormalities. In this chapter, the authors discuss the classification of EEG signals as a key issue in biomedical research for identification and evaluation of the brain activity. Identification of various types of EEG signals is a complicated problem, requiring the analysis of large sets of EEG data. Representative features from a large dataset play an important role in classifying EEG signals in the field of biomedical signal processing. So, to reduce the above problem, this research uses three methods to classify through feature extraction and classification schemes.


Author(s):  
Pradeep Singh ◽  
Sujith Kumar Appikatla

Seizures are caused by irregular electrical pulses in the brain. Epileptic seizure detection on EEG signals is a long process, which is done manually by epileptologists. The aim of the study is automatically detecting the seizures of the brain, given the electroencephalogram signals by feature extraction and processing through different machine learning algorithms. Machines can be trained to do this type of observation and predict the output with high accuracy. In this chapter, the classification study of individual and ensemble classifier is performed for epileptic seizure detection. The proposed method consists of two phases: extraction of data from EEG signals and development of an individual and ensemble models. Bagging ensemble is developed to achieve better results. The development of the ensemble using various classification algorithms contributes towards increasing the diversity of the ensemble. An extensive comparative study with existing benchmark algorithm is performed for epileptic seizure detection.


2018 ◽  
Vol 41 (1) ◽  
pp. 255-276 ◽  
Author(s):  
Jaiprakash Sharma ◽  
Alberto di Ronza ◽  
Parisa Lotfi ◽  
Marco Sardiello

One of the fundamental properties of the cell is the capability to digest and remodel its own components according to metabolic and developmental needs. This is accomplished via the autophagy-lysosome system, a pathway of critical importance in the brain, where it contributes to neuronal plasticity and must protect nonreplaceable neurons from the potentially harmful accumulation of cellular waste. The study of lysosomal biogenesis and function in the context of common and rare neurodegenerative diseases has revealed that a dysfunctional autophagy-lysosome system is the shared nexus where multiple, interconnected pathogenic events take place. The characterization of pathways and mechanisms regulating the lysosomal system and autophagic clearance offers unprecedented opportunities for the development of polyvalent therapeutic strategies based on the enhancement of the autophagy-lysosome pathway to maintain cellular homeostasis and achieve neuroprotection.


2019 ◽  
Vol 26 (2) ◽  
pp. 117-133 ◽  
Author(s):  
Corey Horien ◽  
Abigail S. Greene ◽  
R. Todd Constable ◽  
Dustin Scheinost

Functional magnetic resonance imaging has proved to be a powerful tool to characterize spatiotemporal patterns of human brain activity. Analysis methods broadly fall into two camps: those summarizing properties of a region and those measuring interactions among regions. Here we pose an unappreciated question in the field: What are the strengths and limitations of each approach to study fundamental neural processes? We explore the relative utility of region- and connection-based measures in the context of three topics of interest: neurobiological relevance, brain-behavior relationships, and individual differences in brain organization. In each section, we offer illustrative examples. We hope that this discussion offers a novel and useful framework to support efforts to better understand the macroscale functional organization of the brain and how it relates to behavior.


Sign in / Sign up

Export Citation Format

Share Document