scholarly journals Extraction and Solubility Modeling of Anthocyanins Rich Extract from Hibiscus sabdariffa L. using Supercritical Carbon Dioxide

2021 ◽  
Vol 17 (6) ◽  
pp. 720-730
Author(s):  
Zuhaili Idham ◽  
Nicky Rahmana Putra ◽  
Hasmida Nasir ◽  
Lee Nian Yian ◽  
Nor Faadila Mohd Idrus ◽  
...  

This study aimed to evaluate the extraction yield, and anthocyanins content of Hibiscus sabdariffa L. calyces extract using different temperatures (T) at 50 - 70°C, pressure (P) at 8 - 12 MPa, and modifier ratio at 5 - 10%.  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Chi Wei ◽  
Yu-Chiao Yang ◽  
Show-Jen Hong

Oleanolic acid (OA) and ursolic acid (UA) were extracted fromHedyotis diffusausing a hyphenated procedure of ultrasound-assisted and supercritical carbon dioxide (HSC–CO2) extraction at different temperatures, pressures, cosolvent percentages, and SC–CO2flow rates. The results indicated that these parameters significantly affected the extraction yield. The maximal yields of OA (0.917 mg/g of dry plant) and UA (3.540 mg/g of dry plant) were obtained at a dynamic extraction time of 110 min, a static extraction time of 15 min, 28.2 MPa, and 56°C with a 12.5% (v/v) cosolvent (ethanol/water = 82/18, v/v) and SC–CO2flowing at 2.3 mL/min (STP). The extracted yields were then analyzed by high performance liquid chromatography (HPLC) to quantify the OA and UA. The present findings revealed thatH. diffusais a potential source of OA and UA. In addition, using the hyphenated procedure for extraction is a promising and alternative process for recovering OA and UA fromH. diffusaat high concentrations.


2013 ◽  
Vol 594-595 ◽  
pp. 207-213
Author(s):  
T.A.T. Mohd ◽  
Nur Hashimah Alias ◽  
Nurul Aimi Ghazali ◽  
A. Azizi ◽  
Idris S. Adeib ◽  
...  

Natural dyes represent a sustainable source of colorants, which are low cost and safer than synthetic dyes, concerning human health. The purpose of this study is to extract Vitex negundo L. leaves using supercritical carbon dioxide extraction and to identify the extracts potential as a dye. The extraction process has been conducted at different operating conditions by varying temperature from 40 to 65°C with an increment of 5°C at 20, 25, and 30 MPa within 60 minutes constant time. The extracts obtained at different conditions were analyzed using Gas Chromatography Mass Spectrometer (GC-MS) to determine the chemical compounds present. Increase of temperature increased the extraction yield, but further increasing the temperature above 50°C has reduced the yield. The effect of pressure gave two different patterns, in which the first one showed the yield kept increasing with pressure (20 to 30 MPa) at 40, 45, 50, and 55°C. The second pattern showed sudden reduction of yield above 25 MPa at another two higher temperatures. The highest extraction yield (13.94 mg/g) was obtained at 30 MPa and 50°C which considered as optimum operating condition. GC-MS analysis showed the presence of several phytochemicals including some flavonoid compounds, which are potential sources of dye.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Supriya Priyadarsani ◽  
Avinash Singh Patel ◽  
Abhijit Kar ◽  
Sukanta Dash

AbstractIn this study, an underutilized citrus family fruit named grapefruit was explored for the extraction of lycopene using supercritical carbon dioxide (CO2) extraction technique. An experimental design was developed using response surface methodology to investigate the effect of supercritical carbon dioxide (CO2) operating parameter viz., pressure, temperature, CO2 flow rate, and extraction time on the extraction yield of lycopene yield from grapefruit. A total of 30 sets of experiments were conducted with six central points. The statistical model indicated that extraction pressure and extraction time individually, and their interaction, significantly affected the lycopene yield. The central composite design showed that the polynomial regression models developed were in agreement with the experimental results, with R2 of 0.9885. The optimum conditions for extraction of lycopene from grapefruit were 305 bar pressure, 35 g/min CO2 flow rate, 135 min of extraction time, and 70 °C temperature.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7570
Author(s):  
Gilbert Annohene ◽  
Gary Tepper

Performance degradation under environmental conditions currently limits the practical utility of perovskite-based solar cells. The moisture stability of CH3NH3PbI3 perovskite films and solar cells was measured during exposure to three different levels of relative humidity. The films were crystallized at two different temperatures with and without simultaneous exposure to supercritical carbon dioxide. The film crystallinity, optical absorption, and device photoconversion efficiency was measured over time for three relative humidity levels and both crystallization methods. It was determined that film crystallization in supercritical CO2 resulted in significant improvement in moisture stability for films processed at 50 °C, but negligible improvement in stability for films processed at 100 °C.


2011 ◽  
Vol 65 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Svetlana Milosevic ◽  
Zika Lepojevic ◽  
Zoran Zekovic ◽  
Senka Vidovic

The effects of process parameters on the extraction of Ginkgo biloba L. leaves with supercritical carbon dioxide were investigated. The investigated parameters include particle size (mean particle diameter 0.19, 0.467 and 1.009 mm), solvent flow rate (1.5810-3, 3.2210-3 and 4.1610-3 kg CO2/min) and pressure (100-300 bar), which were obtained by the response surface methodology (RSM) under the following condition ranges: temperature 40-50-60?C, pressure 100-140-180 bar and extraction time of 2-3-4 h at the flow rate of 3.2210-3 kg/min. Based on the experimental results of kinetics of Ginkgo biloba leaves extraction with supercritical carbon dioxide, modeling of the extraction system of Ginkgo biloba-supercritical CO2 was done. Two mathematical models (Reverchon-Sesti Osseo and Sovov?) were applied to correlate the experimental data. RSM was applied to optimize the process parameters of supercritical carbon dioxide extraction of Ginkgo biloba L. leaves. A second-order polynomial response surface equation was developed indicating the effect of variables on Ginkgo biloba extraction yield. The statistical analysis of the experiment indicated that pressure (X1), extraction time (X3), the quadratic of temperature (X22), and the interaction between pressure and extraction time (X1X3), show significant effect on the extraction yield. The results showed that the data were adequately fitted into the second-order polynomial model. It was predicted that the optimum extraction process parameters within the experimental ranges would be the extraction temperature of 52.7?C, the pressure of 184.4 bar, and the extraction time of 3.86 h. Under these conditions, the predicted extraction yield is 2.39% (g/100 g drug).


Sign in / Sign up

Export Citation Format

Share Document